ALDH2 attenuates ischemia and reperfusion injury through regulation of mitochondrial fusion and fission by PI3K/AKT/mTOR pathway in diabetic cardiomyopathy.

Free Radic Biol Med

Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China. Electronic address:

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The function of mitochondrial fusion and fission is one of the important factors causing ischemia-reperfusion (I/R) injury in diabetic myocardium. Aldehyde dehydrogenase 2 (ALDH2) is abundantly expressed in heart, which involved in the regulation of cellular energy metabolism and stress response. However, the mechanism of ALDH2 regulating mitochondrial fusion and fission in diabetic myocardial I/R injury has not been elucidated. In the present study, we found that the expression of ALDH2 was downregulated in rat diabetic myocardial I/R model. Functionally, the activation of ALDH2 resulted in the improvement of cardiac hemodynamic parameters and myocardial injury, which were abolished by the treatment of Daidzin, a specific inhibitor of ALDH2. In H9C2 cardiomyocyte hypoxia-reoxygenation model, ALDH2 regulated the dynamic balance of mitochondrial fusion and fission and maintained mitochondrial morphology stability. Meanwhile, ALDH2 reduced mitochondrial ROS levels, and apoptotic protein expression in cardiomyocytes, which was associated with the upregulation of phosphorylation (p-PI3K, p-AKT, p-mTOR). Moreover, ALDH2 suppressed the mitoPTP opening through reducing 4-HNE. Therefore, our results demonstrated that ALDH2 alleviated the ischemia and reperfusion injury in diabetic cardiomyopathy through inhibition of mitoPTP opening and activation of PI3K/AKT/mTOR pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2022.12.097DOI Listing

Publication Analysis

Top Keywords

mitochondrial fusion
16
fusion fission
16
aldh2
10
ischemia reperfusion
8
reperfusion injury
8
pi3k/akt/mtor pathway
8
diabetic cardiomyopathy
8
i/r injury
8
injury diabetic
8
diabetic myocardial
8

Similar Publications

S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.

View Article and Find Full Text PDF

Introduction: 5-Hydroxymethyl furfural (5-HMF) is a furan compound with a molecular formula of CHO. Studies have found that 5-HMF has many pharmacological effects, such as improving hemorheology, anti-inflammatory, antioxidant activity and anti-myocardial ischemia. Identifying the preventive effect of 5-HMF against ischemic stroke and its possible mechanism was the aim of this investigation.

View Article and Find Full Text PDF

Mitochondrial dysfunction is one of the primary cellular conditions involved in developing Huntington's disease (HD) pathophysiology. The accumulation of mutant huntingtin protein with abnormal PolyQ repeats resulted in the death of striatal neurons with enhanced mitochondrial fragmentation. In search of neuroprotective molecules against HD conditions, we synthesized a set of isoxazole-based small molecules to screen their suitability as beneficial chemicals improving mitochondrial health.

View Article and Find Full Text PDF

Geohistorical events are among the most important factors determining population genetic structure. The Sea of Japan is an intriguing area because of its connection to neighboring seas via shallow straits (< 140 m deep) and the occurrence of deep-water anoxic events during glacial periods. Despite repeated anoxic events, species with low dispersal capabilities have been reported at depths deeper than the straits in both the Sea of Japan and the Pacific Ocean.

View Article and Find Full Text PDF

Chronic myeloid leukemia (CML), a myeloproliferative neoplasm, is characterized by the fusion gene, which results in constitutive tyrosine kinase activity. While tyrosine kinase inhibitors (TKIs) have significantly improved CML outcomes, resistance and the persistence of leukemic stem cells remain major clinical challenges. Curcumin, a natural polyphenol derived from , has demonstrated potential anticancer properties.

View Article and Find Full Text PDF