98%
921
2 minutes
20
Background: Fritillariae Bulbus (FB) is widely used as a traditional medicine for the treatment of lung meridian diseases. It has been proved that FB has good anti-non-small cell lung cancer (NSCLC) activity. However, the active components and potential mechanism are still not clear.
Purpose: To reveal the bioactive components of FB against NSCLC and potential mechanism through spectrum-effect relationship and proteomics.
Method: First, the FB extract was chemically profiled by UHPLC-QTOF-MS and the inhibitory effect of FB extract on A549 cell viability was evaluated by Cell Counting Kit-8 assay. Second, orthogonal-partial least squares-regression analysis was applied to screen potential active compounds through correlating the chemical profile with corresponding inhibitory effect. Third, the anti-NSCLC activities of potential active components were further investigated in terms of cell proliferation, cell cycle and cell apoptosis in vitro and tumor growth in vivo. Finally, proteomics was utilized to reveal the underlying anti-NSCLC mechanism.
Results: Six potential active components including verticine, verticinone, zhebeirine, ebeiedinone, yibeissine and peimisine were screened out by spectrum-effect relationship. Among them, zhebeirine showed higher inhibitory effect on A549 cell viability with IC value of 36.93 μM and dosage-dependent inhibition of A549 xenograft tumor growth in nude mice. Proteomics and western blotting assays indicated that zhebeirine could arrest cell cycle by down-regulating the expressions of CDK1, CDK2, Cyclin A2, Cyclin B2 and inhibiting the phosphorylation of p53. Moreover, the proteins participating in p53 signaling pathway including PCNA, 14-3-3σ, CHEK1 were significantly decreased, which suggested that zhebeirine affected cell cycle progression through p53 signaling pathway.
Conclusion: This study not only provides scientific evidence to support the clinical application of FB against NSCLC, but also demonstrates that zhebeirine is a promising anti-NSCLC lead compound deserving further studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2022.154635 | DOI Listing |
Int J Biometeorol
September 2025
Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
Plant viewing activities, which encompass the enjoyment of seasonal plant phenomena such as flowering and autumn leaf coloration, have become popular worldwide. Plant viewing activities are increasingly challenged by climate change, as key components like plant phenology and climate comfort are highly sensitive to global warming. However, few studies have explored the impact of climate change on viewing activities, particularly from an integrated, multi-factor perspective.
View Article and Find Full Text PDFNeurochem Res
September 2025
International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
The concept of the central nervous system (CNS) reserve emerged from the mismatch often observed between the extent of brain pathology and its clinical manifestations. The cognitive reserve reflects an "active" capacity, driven by the plasticity of CNS cellular components and shaped by experience, learning, and memory processes that increase resilience. We propose that neuroglial cells are central to defining this resilience and cognitive reserve.
View Article and Find Full Text PDFJ Cell Biol
October 2025
Cell and Systems Biology Program, Hospital for Sick Children, Toronto, Canada.
Mitochondria continually undergo fission to maintain their network and health. Nascent fission sites are marked by the ER, which facilitates actin polymerization to drive calcium flux into the mitochondrion and constrict the inner mitochondrial membrane. Septins are a major eukaryotic cytoskeleton component that forms filaments that can both directly and indirectly modulate other cytoskeleton components, including actin.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße, Hamburg, Germany.
Unlabelled: Human adenoviruses (HAdVs) induce significant reorganization of the nuclear environment, leading to the formation of virus-induced subnuclear structures known as replication compartments (RCs). Within these RCs, viral genome replication, gene expression, and modulation of cellular antiviral responses are tightly coordinated, making them valuable models for studying virus-host interactions. In a recent study, we analyzed the protein composition of HAdV type 5 (HAdV-C5) RCs isolated from infected primary cells at different time points during infection using quantitative proteomics.
View Article and Find Full Text PDFmSystems
September 2025
Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas, USA.
is a human fungal pathogen that survives and proliferates within phagocytic immune cells. To sustain growth in the nutrient-limited phagosome environment, the pathogenic yeast scavenges available carbon sources, which must be metabolized through central carbon metabolism for respiration and biomass synthesis. However, carbon metabolic pathways operating in the pathogenic yeast phase have not been extensively mapped.
View Article and Find Full Text PDF