A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Smartphones dependency risk analysis using machine-learning predictive models. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent technological advances have changed how people interact, run businesses, learn, and use their free time. The advantages and facilities provided by electronic devices have played a major role. On the other hand, extensive use of such technology also has adverse effects on several aspects of human life (e.g., the development of societal sedentary lifestyles and new addictions). Smartphone dependency is new addiction that primarily affects the young population. The consequences may negatively impact mental and physical health (e.g., lack of attention or local pain). Health professionals rely on self-reported subjective information to assess the dependency level, requiring specialists' opinions to diagnose such a dependency. This study proposes a data-driven prediction model for smartphone dependency based on machine learning techniques using an analytical retrospective case-control approach. Different classification methods were applied, including classical and modern machine learning models. Students from a private university in Cali-Colombia (n = 1228) were tested for (i) smartphone dependency, (ii) musculoskeletal symptoms, and (iii) the Risk Factors Questionnaire. Random forest, logistic regression, and support vector machine-based classifiers exhibited the highest prediction accuracy, 76-77%, for smartphone dependency, estimated through the stratified-k-fold cross-validation technique. Results showed that self-reported information provides insight into predicting smartphone dependency correctly. Such an approach opens doors for future research aiming to include objective measures to increase accuracy and help to reduce the negative consequences of this new addiction form.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805435PMC
http://dx.doi.org/10.1038/s41598-022-26336-2DOI Listing

Publication Analysis

Top Keywords

smartphone dependency
20
machine learning
8
dependency
7
smartphone
5
smartphones dependency
4
dependency risk
4
risk analysis
4
analysis machine-learning
4
machine-learning predictive
4
predictive models
4

Similar Publications