Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Field selective extraction is crucial for accurate monitoring of triazine herbicides (TAHs) in aqueous samples. For this purpose, using atrazine as template and 3-acrylamido phenylboronic acid as functional monomer which was quickly screened with calculation simulation technology, a new molecularly imprinted monolith-based adsorbent (MBA) was fabricated and utilized as the extraction phase of laboratory-made multichannel in-tip microextraction device (MIMD). A series of techniques were adopted to characterize the physical and chemical properties of the synthesized MBA. Under the optimized preparation conditions, the recognition factor and capture capacity of MBA towards atrazine were as high as 2.9 and 23.4 mg/g, respectively, and the enrichment factors towards TAHs located in the range of 276-359. The study about adsorption isotherm evidenced the adsorption of MBA towards atrazine was fit for Freundlich adsorption model. Under the beneficial extraction parameters, the introduced MBA/MIMD was utilized to on-site extract TAHs in a variety of aqueous samples prior to HPLC determination. High sensitivity (limit of detection: 0.25-0.64 ng/L), good precision (relative standard deviation: 1.4-9.5%) and satisfying recovery (81.0-113%) were achieved. Accuracy and reliability of the introduced method were inspected through confirmation experiments. Owing to the good results and outstanding merits, the established MBA/MIMD technique is appropriate for field sample preparation of TAHs and the developed method can be utilized to monitor TAHs residuals in various aqueous samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2022.463743 | DOI Listing |