A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

DYRK3 phosphorylates SNAPIN to regulate axonal retrograde transport and neurotransmitter release. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Among the five members of the dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK) family, the cellular functions of DYRK3 have not been fully elucidated. Some studies have indicated limited physiological roles and substrates of DYRK3, including promotion of glioblastoma, requirement in influenza virus replication, and coupling of stress granule condensation with mammalian target of rapamycin complex 1 signaling. Here, we demonstrate that serum deprivation causes a decrease in intracellular DYRK3 levels via the proteolytic autophagy pathway, as well as the suppression of DYRK3 gene expression. To further demonstrate how DYRK3 affects cell viability, especially in neurons, we used a yeast two-hybrid assay and identified multiple DYRK3-binding proteins, including SNAPIN, a SNARE-associated protein implicated in synaptic transmission. We also found that DYRK3 directly phosphorylates SNAPIN at the threonine (Thr) 14 residue, increasing the interaction of SNAPIN with other proteins such as dynein and synaptotagmin-1. In central nervous system neurons, SNAPIN is associated with and mediate the retrograde axonal transport of diverse cellular products from the distal axon terminal to the soma and the synaptic release of neurotransmitters, respectively. Moreover, phosphorylation of SNAPIN at Thr-14 was found to positively modulate mitochondrial retrograde transport in mouse cortical neurons and the recycling pool size of synaptic vesicles, contributing to neuronal viability. In conclusion, the present study demonstrates that DYRK3 phosphorylates SNAPIN, positively regulating the dynein-mediated retrograde transport of mitochondria and SNARE complex-mediated exocytosis of synaptic vesicles within the neurons. This finding further suggests that DYRK3 affects cell viability and provides a novel neuroprotective mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803678PMC
http://dx.doi.org/10.1038/s41420-022-01290-0DOI Listing

Publication Analysis

Top Keywords

phosphorylates snapin
12
retrograde transport
12
dyrk3
9
dyrk3 phosphorylates
8
dyrk3 cell
8
cell viability
8
synaptic vesicles
8
snapin
7
snapin regulate
4
regulate axonal
4

Similar Publications