98%
921
2 minutes
20
Introduction: The plant microbiota is known to protect its host against invasion by plant pathogens. Recent studies have indicated that the microbiota of indoor plants is transmitted to the local built environment where it might fulfill yet unexplored functions. A better understanding of the interplay of such microbial communities with human pathogens might provide novel cues related to natural inhibition of them.
Objective: We studied the plant microbiota of two model indoor plants, Musa acuminata and Chlorophytum comosum, and their effect on human pathogens. The main objective was to identify mechanisms by which the microbiota of indoor plants inhibits human-pathogenic bacteria.
Methods: Microbial communities and functioning were investigated using a comprehensive set of experiments and methods combining amplicon and shotgun metagenomic analyses with results from interaction assays.
Results: A diverse microbial community was found to be present on Musa and Chlorophytum grown in different indoor environments; the datasets comprised 1066 bacterial, 1261 fungal, and 358 archaeal ASVs. Bacterial communities were specific for each plant species, whereas fungal and archaeal communities were primarily shaped by the built environment. Sphingomonas and Bacillus were found to be prevalent components of a ubiquitous core microbiome in the two model plants; they are well-known for antagonistic activity towards plant pathogens. Interaction assays indicated that they can also antagonize opportunistic human pathogens. Moreover, the native plant microbiomes harbored a broad spectrum of biosynthetic gene clusters, and in parallel, a variety of antimicrobial resistance genes. By conducting comparative metagenomic analyses between plants and abiotic surfaces, we found that the phyllosphere microbiota harbors features that are clearly distinguishable from the surrounding abiotic surfaces.
Conclusions: Naturally occurring phyllosphere bacteria can potentially act as a protective shield against opportunistic human pathogens. This knowledge and the underlying mechanisms can provide an important basis to establish a healthy microbiome in built environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811327 | PMC |
http://dx.doi.org/10.1016/j.jare.2022.02.003 | DOI Listing |
BMC Infect Dis
September 2025
Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
Background: Escherichia coli ST131 and clade H30Rx are the most prevalent extended-spectrum β-lactamase-producing E. coli (ESBL-EC) causing bacteremia and urinary tract infections globally and in Sweden. Previous studies have linked ST131-H30Rx with septic shock and mortality, as well as prolonged carriage.
View Article and Find Full Text PDFBMC Infect Dis
September 2025
Department of Laboratory Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
Background: Serratia marcescens is an opportunistic pathogen increasingly associated with healthcare-associated infections and rising antimicrobial resistance. The emergence of multidrug-resistant (MDR) and carbapenem-resistant S. marcescens (CRSM) presents significant therapeutic challenges.
View Article and Find Full Text PDFBMC Public Health
September 2025
Department of Mathematics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Str.48, Kaiserslautern, 67663, Germany.
We study the dynamics of coexisting influenza and SARS-CoV-2 by adapting a well-established age-specific COVID-19 model to a multi-pathogen framework. Sensitivity analysis and adjustment of the model to real-world data are used to investigate the influence of age-related factors on disease dynamics. Our findings underscore the critical role that transmission rates play in shaping the spread of influenza and COVID-19.
View Article and Find Full Text PDFCalcif Tissue Int
September 2025
FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.
X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).
View Article and Find Full Text PDFNat Immunol
September 2025
Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
CD4 T follicular helper (T) cells support tailored B cell responses against multiple classes of pathogens. To reveal how diverse T phenotypes are established, we profiled mouse T cells in response to viral, helminth and bacterial infection. We identified a core T signature that is distinct from CD4 T follicular regulatory and effector cells and identified pathogen-specific transcriptional modules that shape T function.
View Article and Find Full Text PDF