Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: There is ample evidence that air pollution increases mortality risk, but most studies are based on modelled estimates of air pollution, while the subjective perception of air quality is scarcely assessed. We aimed to compare the effects of objective and subjective exposure to air pollution on cardiorespiratory mortality in Brussels, Belgium.

Methods: Data consisted of the 2001 Belgian census linked to registry-based mortality data for the follow-up period 2001-2014. We included individuals aged >30 years of age residing in Brussels at baseline (2001). Air pollution exposure was assessed with objective (modelled annual mean concentrations of PM in micrograms per cubic metre, μg/m) and subjective indicators (poor self-reported air quality perception in the census). We used Cox Proportional Hazard models with age as the underlying time scale to evaluate associations with cardiovascular disease (CVD) and respiratory disease mortality, and separately, ischaemic heart disease (IHD), cerebrovascular disease, and COPD excluding asthma mortality. We specified single- and two-exposure models and evaluated effect modification by neighbourhood unemployment rate.

Results: 437,340 individuals were included at baseline. During follow-up (2001-2014), 22,821 (5%) individuals had died from CVDs and 8572 (2%) from respiratory diseases. In single-exposure models, PM was significantly associated with an increased risk in CVD and IHD mortality (e.g. for IHD, per 5 μg/m increase: Hazard Ratio, HR:1.22, 95%CI:1.08-1.37), and poor air quality perception with COPD excluding asthma mortality (HR:1.23, 95%CI:1.15-1.33). Associations remained significant in the two-exposure models, and additionally, perception was associated with respiratory disease mortality. Associations became gradually stronger with increasing neighbourhood unemployment rate [e.g. in the highest, Q3: PM and cerebrovascular disease mortality (HR:1.53, 95%CI:1.04-2.24)].

Conclusion: Our findings suggest that objective and subjective exposure to air pollution increased the risk of dying from cardiovascular and respiratory diseases respectively in Brussels. These results encourage policies reducing pollution load in Brussels whilst considering socio-economic inequalities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.115180DOI Listing

Publication Analysis

Top Keywords

air pollution
20
air quality
16
disease mortality
16
quality perception
12
respiratory disease
12
mortality
10
air
9
cardiovascular respiratory
8
objective subjective
8
subjective exposure
8

Similar Publications

Background: Climate distress is a psychological reaction to adverse weather events and climate change. These events can increase people's vulnerability to develop psychiatric disorders like anxiety, depression, and PTSD particularly in disaster-prone regions like India.

Aim: To explore the relationship between climate distress and psychological impact with a particular emphasis on women, elderly, and other at risk populations who owing to their health vulnerabilities, lack of resources or social roles that make them dependent on others, experience stress in the face of climate change.

View Article and Find Full Text PDF

Epidemiological studies have already established associations between air pollutants and adverse health outcomes, but the causal associations between air pollutants and chest pain (CP) and gingival pain (GP) remain unclear. This study aimed to explore the potential causal effects of air pollutants on CP and GP. Utilizing genome-wide association study summary statistics from European-ancestry populations, we conducted bidirectional two-sample Mendelian randomization (MR) analyses.

View Article and Find Full Text PDF

Promotion of CO Reactivity by Organic Acid on Aerosol Surfaces.

J Am Chem Soc

September 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Recently, the atmospheric aerosol surface, which is reported to be quite acidic, is recognized as an important microreactive medium for atmospheric chemistry, profoundly impacting air quality and global climate. Nevertheless, the molecular-level understanding of the effect of surface-bound acids on atmospheric chemical reactions remains limited. Herein, the reactions between CO and NH/amines at the air-water interface with organic acids are investigated using combined molecular dynamic simulations and quantum chemical calculations.

View Article and Find Full Text PDF

Assessment of Ambient Air Pollution from Current-Use Pesticides (CUPs) Using Sorbent Impregnated Passive Air Samplers (SIP-PAS) in Bursa: Spatial and Temporal Variations, Source Identification, and Health Risk Evaluation.

Arch Environ Contam Toxicol

September 2025

Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Mimar Sinan Mahallesi Mimar Sinan Bulvarı Eflak Caddesi No:177, 16310, Yıldırım, Bursa, Turkey.

This study investigates airborne concentrations of six insecticides widely used on crops grown in agricultural, semi-urban, and rural areas of Bursa Province, Türkiye. Sorbent-impregnated passive air samplers (SIP-PASs), consisting of polyurethane foam (PUF) disks impregnated with XAD-2 resin, were deployed at ten strategically selected sites representing diverse agricultural and demographic profiles within the province. Analytes were quantified using gas chromatography-mass spectrometry (GC-MS) for depuration compounds and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for target insecticides.

View Article and Find Full Text PDF

Climate change, health, and wearable biosensors: Harnessing emerging technologies to bridge environmental exposures and physiological responses.

Prog Mol Biol Transl Sci

September 2025

Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany. Electronic address:

Climate change poses a growing threat to human health, increasing exposure to extreme environmental conditions. Wearable biosensors provide real-time monitoring of physiological responses to heat stress, including cardiovascular strain, thermoregulatory disruptions, sleep disturbances, and biomarkers of heat-related illnesses. These devices also assess behavioural adaptations, such as reduced physical activity, offering insights into physiological resilience and susceptibility.

View Article and Find Full Text PDF