Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims: Acute decompensated heart failure (ADHF) presents with pulmonary congestion, which is caused by an increased pulmonary arterial wedge pressure (PAWP). PAWP is strongly associated with prognosis, but its quantitative evaluation is often difficult. Our prior work demonstrated that a deep learning approach based on chest radiographs can calculate estimated PAWP (ePAWP) in patients with cardiovascular disease. Therefore, the present study aimed to assess the prognostic value of ePAWP and compare it with other indices of haemodynamic congestion.

Methods And Results: We conducted a post hoc analysis of a single-centre, prospective, observational heart failure registry and analysed data from 534 patients admitted for ADHF between January 2018 and December 2019. The deep learning approach was used to calculate ePAWP from chest radiographs at admission and discharge. Patients were divided into three groups based on the ePAWP tertiles at discharge, as follows: first tertile group (ePAWP ≤ 11.2 mm Hg, n = 178), second tertile group (11.2 < ePAWP < 13.5 mm Hg, n = 170), and third tertile group (ePAWP ≥ 13.5 mm Hg, n = 186). The third tertile group had a higher prevalence of atrial fibrillation and lower systolic blood pressure at admission; a lower platelet count and higher total bilirubin at both admission and discharge; and a higher left atrial diameter, peak early diastolic transmitral flow velocity, right ventricular end-diastolic diameter, and maximal inferior vena cava diameter at discharge. During the median follow-up period of 289 days, 223 (41.7%) patients reached the primary endpoint (a composite of all-cause mortality or rehospitalization for heart failure). Kaplan-Meier analysis revealed a significantly higher composite event rate in the third tertile group (log-rank test, P = 0.006). Even when adjusted for clinically relevant factors, a higher ePAWP at discharge and a smaller decrease in ePAWP from admission to discharge were significantly associated with higher event rates [ePAWP at discharge: hazard ratio, 1.10; 95% confidence interval (CI), 1.02-1.19; P = 0.010; and size of ePAWP decrease: hazard ratio, 0.94; 95% CI, 0.89-0.99; P = 0.038].

Conclusions: Our study suggests that ePAWP calculated by a deep learning approach may be useful for identifying and monitoring pulmonary congestion during hospitalization for ADHF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053257PMC
http://dx.doi.org/10.1002/ehf2.14282DOI Listing

Publication Analysis

Top Keywords

deep learning
12
heart failure
12
pulmonary arterial
8
arterial wedge
8
wedge pressure
8
learning approach
8
chest radiographs
8
tertile group
8
prognostic significance
4
significance pulmonary
4

Similar Publications

Objective: The aim of this study is to evaluate the prognostic performance of a nomogram integrating clinical parameters with deep learning radiomics (DLRN) features derived from ultrasound and multi-sequence magnetic resonance imaging (MRI) for predicting survival, recurrence, and metastasis in patients diagnosed with triple-negative breast cancer (TNBC) undergoing neoadjuvant chemotherapy (NAC).

Methods: This retrospective, multicenter study included 103 patients with histopathologically confirmed TNBC across four institutions. The training group comprised 72 cases from the First People's Hospital of Lianyungang, while the validation group included 31 cases from three external centers.

View Article and Find Full Text PDF

This study explores deep feature representations from photoplethysmography (PPG) signals for coronary artery disease (CAD) identification in 80 participants (40 with CAD). Finger PPG signals were processed using multilayer perceptron (MLP) and convolutional neural network (CNN) autoencoders, with performance assessed via 5-fold cross-validation. The CNN autoencoder model achieved the best results (recall 96.

View Article and Find Full Text PDF

Purpose: To evaluate choroidal vasculature using a novel three-dimensional algorithm in fellow eyes of patients with unilateral chronic central serous chorioretinopathy (cCSC).

Methods: Patients with unilateral cCSC were retrospectively included. Automated choroidal segmentation was conducted using a deep-learning ResUNet model.

View Article and Find Full Text PDF

Background: Emotion recognition from electroencephalography (EEG) can play a pivotal role in the advancement of brain-computer interfaces (BCIs). Recent developments in deep learning, particularly convolutional neural networks (CNNs) and hybrid models, have significantly enhanced interest in this field. However, standard convolutional layers often conflate characteristics across various brain rhythms, complicating the identification of distinctive features vital for emotion recognition.

View Article and Find Full Text PDF

GPT2-ICC: A data-driven approach for accurate ion channel identification using pre-trained large language models.

J Pharm Anal

August 2025

Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.

Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces. Here we have developed a deep learning algorithm, GPT2 Ion Channel Classifier (GPT2-ICC), which effectively distinguishing ion channels from a test set containing approximately 239 times more non-ion-channel proteins. GPT2-ICC integrates representation learning with a large language model (LLM)-based classifier, enabling highly accurate identification of potential ion channels.

View Article and Find Full Text PDF