Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Our estimates of a person's age from their facial appearance suffer from several well-known biases and inaccuracies. Typically, for example, we tend to overestimate the age of smiling faces compared to those with a neutral expression, and the accuracy of our estimates decreases for older faces. The growing interest in age estimation using artificial intelligence (AI) technology raises the question of how AI compares to human performance and whether it suffers from the same biases. Here, we compared human performance with the performance of a large sample of the most prominent AI technology available today. The results showed that AI is even less accurate and more biased than human observers when judging a person's age-even though the overall pattern of errors and biases is similar. Thus, AI overestimated the age of smiling faces even more than human observers did. In addition, AI showed a sharper decrease in accuracy for faces of older adults compared to faces of younger age groups, for smiling compared to neutral faces, and for female compared to male faces. These results suggest that our estimates of age from faces are largely driven by particular visual cues, rather than high-level preconceptions. Moreover, the pattern of errors and biases we observed could provide some insights for the design of more effective AI technology for age estimation from faces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800363 | PMC |
http://dx.doi.org/10.1038/s41598-022-27009-w | DOI Listing |