98%
921
2 minutes
20
The Human Immunodeficiency Virus-1 (HIV-1) is known to modulate the host environment for successful replication and propagation like other viruses. The virus utilises its proteins to interact with or modulate host factors and host signalling pathways that may otherwise restrict the virus. A previous study from our lab has shown that the host heat shock protein 70 (HSP70) binding protein (HSPBP1) is a co-chaperone that inhibits viral replication. We have also shown that the virus downregulates HSPBP1 during infection. However, the mechanism of downregulation remains to be elucidated. In the present study, we hypothesized that the HSPBP1 promoter may be repressed during infection leading to its downmodulation at the RNA and protein levels. The 5' upstream region of the HSPBP1 gene was first mapped and it was identified that a fragment comprising of a ∼600 bp upstream region of the transcription start site show the highest promoter-like activity. Further, the Sp1 transcription factor was shown to be essential for normal promoter activation. Our results further demonstrate that HIV-1 downregulates the activity of the identified promoter. It was seen that the viral transactivator protein, Tat, was responsible for the downmodulation of the HSPBP1 promoter. HIV-1 Tat is known to bind and regulate several cellular promoters during infection, thereby making the environment conducive for establishment of the virus. Our results further show that Tat is recruited to the HSPBP1 promoter and in the presence of Tat, recruitment of Sp1 on HSPBP1 promoter was decreased, which explains the suppression of HSPBP1 during HIV-1 infection. Therefore, this study further adds to the list of cellular promoters that are modulated by Tat during HIV-1 infection either directly or indirectly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10194149 | PMC |
http://dx.doi.org/10.1016/j.virusres.2022.199034 | DOI Listing |
Virus Res
January 2023
National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra 411007, India. Electronic address:
The Human Immunodeficiency Virus-1 (HIV-1) is known to modulate the host environment for successful replication and propagation like other viruses. The virus utilises its proteins to interact with or modulate host factors and host signalling pathways that may otherwise restrict the virus. A previous study from our lab has shown that the host heat shock protein 70 (HSP70) binding protein (HSPBP1) is a co-chaperone that inhibits viral replication.
View Article and Find Full Text PDFNucleic Acids Res
February 2016
National Centre for Cell Science, Pune, Maharashtra 411007, India
HIV-1 efficiently hijacks host cellular machinery and exploits a plethora of host-viral interactions for its successful survival. Identifying host factors that affect susceptibility or resistance to HIV-1 may offer a promising therapeutic strategy against HIV-1. Previously, we have reported that heat shock proteins, HSP40 and HSP70 reciprocally regulate HIV-1 gene-expression and replication.
View Article and Find Full Text PDFArch Biochem Biophys
March 2005
Department of Biological Sciences, University of Pittsburgh, PA 15260, USA.
Hsp70 and Hsp90 molecular chaperones play essential roles in protein expression and maturation, and while catalyzing protein folding they can "decide" to target mis-folded substrates for degradation. In this report, we show for the first time distinct but partially overlapping requirements for Hsp90, Hsp70, and an Hsp70 nucleotide exchange factor (NEF) at different steps during the biogenesis of a model substrate, firefly luciferase (FFLux), in yeast. By examining the inducible expression of FFLux in wild type cells and in specific yeast mutants, we find that the Fes1p NEF is required for efficient FFLux folding, whereas the Hsp70, Ssa1p, is required for both protein folding and stability, and to maintain maximal FFLux mRNA levels.
View Article and Find Full Text PDF