A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Application of Machine Learning for Segmentation of the Pulmonary Acinus Imaged by Synchrotron X-Ray Tomography. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To assess the effectiveness of inhalation therapy, it is important to evaluate the lungs' structure; thus, visualization of the entire lungs at the level of the alveoli is necessary. To achieve this goal, the applied visualization technique must satisfy the following two conditions simultaneously: (1) it has to obtain images of the entire lungs, since one part of the lungs is influenced by the other parts, and (2) the images have to capture the detailed structure of the alveolus/acinus in which gas exchange occurs. However, current visualization techniques do not fulfill these two conditions simultaneously. Segmentation is a process in which each pixel of the obtained high-resolution images is simplified (i.e., the representation of an image is changed by categorizing and modifying each pixel) so that we can perform three-dimensional volume rendering. One of the bottlenecks of current approaches is that the accuracy of the segmentation of each image has to be evaluated on the outcome of the process (mainly by an expert). It is a formidable task to evaluate the astronomically large numbers of images that would be required to resolve the entire lungs in high resolution. To overcome this challenge, we propose a new approach based on machine learning (ML) techniques for the validation step. We demonstrate the accuracy of the segmentation process itself by comparison with previously validated images. In this ML approach, to achieve a reasonable accuracy, millions/billions of parameters used for segmentation have to be optimized. This computationally demanding new approach is achievable only due to recent dramatic increases in computation power. The objective of this article is to explain the advantages of ML over the classical approach for acinar imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942171PMC
http://dx.doi.org/10.1089/jamp.2022.0051DOI Listing

Publication Analysis

Top Keywords

entire lungs
12
machine learning
8
conditions simultaneously
8
segmentation process
8
accuracy segmentation
8
segmentation
5
images
5
application machine
4
learning segmentation
4
segmentation pulmonary
4

Similar Publications