98%
921
2 minutes
20
Introduction: Conventional hot-alkaline cocoon degumming techniques greatly weaken the physicochemical and mechanical properties of silk fibroin fiber, thus affecting the quality of silk fabric. Moreover, it causes massive energy waste and serious environmental pollution.
Objective: This study aims to establish a novel cocoon self-degumming method by genetic modification of silkworm varieties and silk fibers.
Methods: The self-degummed cocoon material was generated by specifically overexpressing trypsinogen protein in the sericin layer of silk thread; the effect of cocoon self-degumming method was evaluated by the degumming rate of sericin protein, the cleanliness and equivalent diameter of silk fibroin fiber; the basic characteristics of silk fibroin fiber degummed by cocoon self-degumming method and conventional hot-alkaline degumming technique were determined by electron microscopy, Fourier infrared spectroscopy, X-ray diffraction and tensile tests; the composition and biological activity of degummed sericin protein was respectively analyzed by liquid chromatograph-mass spectrometry and cytological experiments.
Results: The genetically engineered self-degumming cocoon containing trypsinogen protein was successfully created, and the content of trypsinogen protein in silk was 47.14 ± 0.90 mg/g. The sericin protein in the self-degumming cocoon was removed out in water or 1 mM Tris-HCl buffer (pH = 8.0). Compared to alkaline-degummed silk fibroin, self-degummed silk fibroin had better cleanliness, thicker equivalent diameter, more complete silk structure and better mechanical property. In addition, sericin protein degummed from self-degumming cocoons significantly promoted cell proliferation and caused no obvious cytotoxicity.
Conclusion: Compared to conventional hot-alkaline degumming technique, the cocoon self-degumming method by genetically overexpressing trypsinogen protein in sericin layer of silk thread can self-degummed in a mild degumming condition, and gain silk fiber with better quality and more biologically active sericin protein products. This strategy can not only reduce the environmental impact, but also generate greater economic value, which will accelerate its application in the silk and pharmaceutical industries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658416 | PMC |
http://dx.doi.org/10.1016/j.jare.2022.12.005 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing
Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.
View Article and Find Full Text PDFACS Nano
September 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev
Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho 94000, Vietnam.
Anthocyanins, natural antioxidants found in L. flowers, exhibit instability when exposed to high temperatures. Therefore, to heat-protect the anthocyanins, this investigation produced extract-loaded polymeric (polyethylenimine (PEI) or poly-(vinyl alcohol) (PVA)) functionalized silk fibroin nanoparticles using a green/sustainable process.
View Article and Find Full Text PDFACS Nano
September 2025
School of Medicine, Nankai University, Tianjin 300071, China.
In situ articular cartilage (AC) regeneration is a meticulously coordinated process. Microfracture has been the most extensive clinical approach in AC repair, but it faces challenges such as matrix degradation, generation, and remodeling within a local inflammatory microenvironment. So far, it remains a challenge to establish a multistage regulatory framework for coordinating these cellular events, particularly the immune response and chondrocyte proliferation in microfracture-mediated AC repair microenvironments, which is crucial for promoting AC regeneration quality.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
Famotidine (FMD) is an H₂-receptor antagonist with limited oral bioavailability and a short plasma half-life (2.5-4 h). Silk fibroin-chitosan nanoparticles (FBN-CS-NPs) represent a novel nanocarrier approach for treating peptic ulcers, combining biocompatibility, mucoadhesiveness, and pH-sensitive release.
View Article and Find Full Text PDF