Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Nuclear quadrupole resonances for and O nuclei are exquisitely sensitive to interactions with surrounding atoms. As a result, nitrogen and oxygen solid-state nuclear magnetic resonance (ssNMR) provides a powerful tool for investigating structure and dynamics in complex systems. First-principles calculations are increasingly used to facilitate spectral assignment and to evaluate and adjust crystal structures. Recent work combining the strengths of planewave density functional theory (DFT) calculations with a single molecule correction obtained using a higher level of theory has proven successful in improving the accuracy of predicted chemical shielding (CS) tensors and O quadrupolar coupling constants ( ). Here we extend this work by examining the accuracy of predicted N and O electric field gradient (EFG) tensor components obtained using alternative planewave-corrections involving cluster and two-body fragment-based calculations. We benchmark the accuracy of CS and EFG tensor predictions for both nitrogen and oxygen using planewave, two-body fragment, and enhanced planewave-corrected techniques. Combining planewave and two-body fragment calculations reduces the error in predicted O values by 35% relative to traditional planewave calculations. These enhanced planewave-correction methods improve the accuracy of O and N EFG tensor components by 15% relative to planewave DFT but yield minimal improvement relative to a simple molecular correction. However, in structural environments involving either high symmetry or strong intermolecular interactions, enhanced planewave-corrected methods provide a distinct advantage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrc.5328 | DOI Listing |