98%
921
2 minutes
20
Developing facile synthetic strategies toward ultrafine one-dimensional (1D) nanowires (NWs) with rich catalytic hot spots is pivotal for exploring effective heterogeneous catalysts. Herein, we demonstrate a two-dimensional (2D) template-directed strategy for synthesizing 1D kink-rich PdPb NWs with abundant grain boundaries to serve as high-efficiency electrocatalysts toward oxygen reduction reaction (ORR). In this one-pot synthesis, ultrathin Pd nanosheets were initially generated, which then served as self-sacrificial 2D nano-templates. A dynamic equilibrium growth was subsequently established on the 2D Pd nanosheets through the center-selected etching of Pd atoms and edge-preferred co-deposition of Pd/Pb atoms. This was followed by the oriented attachment of the generated Pd/Pb alloy nanograins and fragments. Thus, kink-rich PdPb NWs with rich grain boundary defects were obtained in high yield, and these NWs were used as electrocatalytic active catalysts. The surface electronic interaction between Pd and Pb atoms effectively decreased the surface d-band center to weaken the binding of oxygen-containing intermediates toward improved ORR kinetics. Specifically, the kink-rich PdPb NWs/C catalyst delivered outstanding ORR mass activity and specific activity (2.26 A⋅mg and 2.59 mA⋅cm, respectively) in an alkaline solution. These values were respectively 13.3 and 10.8 times those of state-of-the-art commercial Pt/C catalyst. This study provides an innovative strategy for fabricating defect-rich low-dimensional nanocatalysts for efficient energy conversion catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.12.091 | DOI Listing |
J Colloid Interface Sci
March 2023
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China. Electronic address:
Developing facile synthetic strategies toward ultrafine one-dimensional (1D) nanowires (NWs) with rich catalytic hot spots is pivotal for exploring effective heterogeneous catalysts. Herein, we demonstrate a two-dimensional (2D) template-directed strategy for synthesizing 1D kink-rich PdPb NWs with abundant grain boundaries to serve as high-efficiency electrocatalysts toward oxygen reduction reaction (ORR). In this one-pot synthesis, ultrathin Pd nanosheets were initially generated, which then served as self-sacrificial 2D nano-templates.
View Article and Find Full Text PDF