A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

ConCISE: Consensus Annotation Propagation of Ion Features in Untargeted Tandem Mass Spectrometry Combining Molecular Networking and Metabolite Structure Prediction. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent developments in molecular networking have expanded our ability to characterize the metabolome of diverse samples that contain a significant proportion of ion features with no mass spectral match to known compounds. Manual and tool-assisted natural annotation propagation is readily used to classify molecular networks; however, currently no annotation propagation tools leverage consensus confidence strategies enabled by hierarchical chemical ontologies or enable the use of new tools without significant modification. Herein we present ConCISE (Consensus Classifications of Elucidations) which is the first tool to fuse molecular networking, spectral library matching and class predictions to establish accurate putative classifications for entire subnetworks. By limiting annotation propagation to only structural classes which are identical for the majority of ion features within a subnetwork, ConCISE maintains a true positive rate greater than 95% across all levels of the ChemOnt hierarchical ontology used by the ClassyFire annotation software (superclass, class, subclass). The ConCISE framework expanded the proportion of reliable and consistent ion feature annotation up to 76%, allowing for improved assessment of the chemo-diversity of dissolved organic matter pools from three complex marine metabolomics datasets comprising dominant reef primary producers, five species of the diatom genus and stromatolite sediment samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786801PMC
http://dx.doi.org/10.3390/metabo12121275DOI Listing

Publication Analysis

Top Keywords

annotation propagation
16
ion features
12
molecular networking
12
concise consensus
8
annotation
6
concise
4
consensus annotation
4
propagation
4
ion
4
propagation ion
4

Similar Publications