A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Analysis of Unconfined Compressive Strength of Rammed Earth Mixes Based on Artificial Neural Network and Statistical Analysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Earth materials have been used in construction as safe, healthy and environmentally sustainable. It is often challenging to develop an optimum soil mix because of the significant variations in soil properties from one soil to another. The current study analyzed the soil properties, including the grain size distribution, Atterberg limits, compaction characteristics, etc., using multilinear regression (MLR) and artificial neural networks (ANN). Data collected from previous studies (i.e., 488 cases) for stabilized (with either cement or lime) and unstabilized soils were considered and analyzed. Missing data were estimated by correlations reported in previous studies. Then, different ANNs were designed (trained and validated) using Levenberg-Marquardt (L-M) algorithms. Using the MLR, several models were developed to estimate the compressive strength of both unstabilized and stabilized soils with a Pearson Coefficient of Correlation (R) equal to 0.2227 and 0.766, respectively. On the other hand, developed ANNs gave a higher value for R than MLR (with the highest value achieved at 0.9883). Thereafter, an experimental program was carried out to validate the results achieved in this study. Finally, a sensitivity analysis was carried out using the resulting networks to assess the effect of different soil properties on the unconfined compressive strength (UCS). Moreover, suitable recommendations for earth materials mixes were presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784941PMC
http://dx.doi.org/10.3390/ma15249029DOI Listing

Publication Analysis

Top Keywords

compressive strength
12
soil properties
12
unconfined compressive
8
artificial neural
8
earth materials
8
previous studies
8
soil
5
analysis unconfined
4
strength rammed
4
rammed earth
4

Similar Publications