98%
921
2 minutes
20
To evaluate the effects of visual feedback training on motor recovery in postoperative patients with a total knee replacement (TKR). The performance of 40 first-ever TKR patients (27 females; mean age: 70.5 (67.2−74.0) years) was evaluated in a single center, single-blind, randomized controlled study. The patients were randomly and equally distributed into two demographically/clinically matched groups undergoing experimental or traditional treatments. All patients have been treated in a 1 h session, 2/day for 5 days a week, for six consecutive weeks. The first group (“control”) underwent conventional physical therapy, whereas the experimental group received advanced knee training with visual feedback using the TecnoBody® device (Walker View 3.0 SCX, Dalmine (BG), Italy). The clinical scales and kinematic parameters coming from the gait analysis were evaluated to demonstrate the dynamic balance function in a standing position before and after each treatment. After the treatment, both experimental and control groups improved significantly and similarly, as measured by the clinical scales (Numeric Rating Scale for Pain and Barthel index). A significant boosting of the motor performance was detected in the experimental group with respect to the control group in the terms of symmetry index 84 (80.8−85.4) vs. 87.15 (84−92.8) p = 0.001 *; single stance support 34.9 (34.1−36.5) vs. 37.8 (36.6−38.9); p < 0.001; and obliquity parameters 58.65 (51.3−70.3) vs. 73 (62.3−82.1); p < 0.001. Applying visual feedback training in addition to traditional rehabilitation strategies improves the knee function and motor control in postoperative TKR patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783629 | PMC |
http://dx.doi.org/10.3390/jcm11247355 | DOI Listing |
Med Eng Phys
October 2025
Mechatronics Engineering Department, Sakarya University of Applied Sciences, Serdivan, Sakarya, 54600, Sakarya, Turkey; Systems Engineering Department, Military Technological College, Al Matar, Muscat, 111, Muscat, Oman. Electronic address:
Balance is a critical component of daily activities and overall quality of life. This study aims to develop a cost-effective exercise system for the rehabilitation of balance disorders by combining a sensor module with target-oriented video games. The system, designed using a microcontroller-controlled sensor module and Unity game engine, features a game component that provides visual feedback and is synchronized with the platform movements.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
September 2025
Neuroprostheses capable of providing Somatotopic Sensory Feedback (SSF) enables the restoration of tactile sensations in amputees, thereby enhancing prosthesis embodiment, object manipulation, balance and walking stability. Transcutaneous Electrical Nerve Stimulation (TENS) represents a primary noninvasive technique for eliciting somatotopic sensations. Devices commonly used to evaluate the effectiveness of TENS stimulation are often bulky and main powered.
View Article and Find Full Text PDFBiol Cybern
September 2025
Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 61801, IL, USA.
In this article, a biophysically realistic model of a soft octopus arm with internal musculature is presented. The modeling is motivated by experimental observations of sensorimotor control where an arm localizes and reaches a target. Major contributions of this article are: (i) development of models to capture the mechanical properties of arm musculature, the electrical properties of the arm peripheral nervous system (PNS), and the coupling of PNS with muscular contractions; (ii) modeling the arm sensory system, including chemosensing and proprioception; and (iii) algorithms for sensorimotor control, which include a novel feedback neural motor control law for mimicking target-oriented arm reaching motions, and a novel consensus algorithm for solving sensing problems such as locating a food source from local chemical sensory information (exogenous) and arm deformation information (endogenous).
View Article and Find Full Text PDFPsychol Res
September 2025
Berlin School of Mind and Brain & Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
The existence of free will has been called into question by Benjamin Libet's seminal experiment, who argued that our conscious decision is preceded by an unconscious decision reflected in the readiness potential (RP). Alternatively, it has been argue that the RP rather reflects a decision process in which different signals accumulate until they reach the intention threshold, at which point an agent experience their intention simultaneously. This raises the question what type of signal is accumulated given that no external information is provided.
View Article and Find Full Text PDFPsychol Res
September 2025
Neurorehabilitation Research Center, Kio University, Nara, Japan.
The ability to detect small errors between sensory prediction in the brain and actual sensory feedback is important in rehabilitation after brain injury, where motor function needs to be restored. To date in the recent study, a delayed visual error detection task during upper limb movement was used to measure this ability for healthy participants or patients. However, this ability during walking, which is the most sought-after in brain-injured patients, was unclear.
View Article and Find Full Text PDF