Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

HeberFERON, a co-formulation of Interferon (IFN)-α2b and IFN-γ, has effects on skin cancer and other solid tumors. It has antiproliferative effects over glioblastoma multiform (GBM) clones and cultured cell lines, including U-87 MG. Here, we report the first label-free quantitative proteomic and phospho-proteomic analyses to evaluate changes induced by HeberFERON after 72 h incubation of U-87 MG that can explain the effect on cellular proliferation. LC-MS/MS, functional enrichment and networking analysis were performed. We identified 7627 proteins; 122 and 211 were down- and up-regulated by HeberFERON (fold change > 2; < 0.05), respectively. We identified 23,549 peptides (5692 proteins) and 8900 phospho-peptides; 523 of these phospho-peptides (359 proteins) were differentially modified. Proteomic enrichment showed IFN signaling and its control, direct and indirect antiviral mechanisms were the main modulated processes. Phospho-proteome enrichment displayed the cell cycle as one of the most commonly targeted events together with cytoskeleton organization; translation/RNA splicing, autophagy and DNA repair, as represented biological processes. There is a high interconnection of phosphoproteins in a molecular network; mTOR occupies a centric hub with interactions with translation machinery, cytoskeleton and autophagy components. Novel phosphosites and others with unknown biological functionality in key players in the aforementioned processes were regulated by HeberFERON and involved CDK and ERK kinases. These findings open new experimental hypotheses regarding HeberFERON action. The results obtained contribute to a better understanding of HeberFERON effector mechanisms in the context of GBM treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776974PMC
http://dx.doi.org/10.3390/cells11244068DOI Listing

Publication Analysis

Top Keywords

heberferon
7
proteomics phospho-proteomics
4
phospho-proteomics profiling
4
profiling co-formulation
4
co-formulation type
4
type interferons
4
interferons heberferon
4
heberferon glioblastoma-derived
4
glioblastoma-derived cell
4
cell u-87
4

Similar Publications

Background: HeberFERON is a co-formulation of α2b and γ interferons, based on their synergism, which has shown its clinical superiority over individual interferons in basal cell carcinomas. In glioblastoma (GBM), HeberFERON has displayed promising preclinical and clinical results. This led us to design a microarray experiment aimed at identifying the molecular mechanisms involved in the distinctive effect of HeberFERON compared to the individual interferons in U-87MG model.

View Article and Find Full Text PDF

HeberFERON, a co-formulation of Interferon (IFN)-α2b and IFN-γ, has effects on skin cancer and other solid tumors. It has antiproliferative effects over glioblastoma multiform (GBM) clones and cultured cell lines, including U-87 MG. Here, we report the first label-free quantitative proteomic and phospho-proteomic analyses to evaluate changes induced by HeberFERON after 72 h incubation of U-87 MG that can explain the effect on cellular proliferation.

View Article and Find Full Text PDF

Temozolomide (TMZ) is a chemotherapeutic used for the treatment of glioblastoma. The MGMT repair enzyme (O'-(6)-methyl guanine-DNA-methyltransferase) promoter methylation is a predictive biomarker to TMZ response; interferons (IFNs) type I can downregulate MGMT expression improving survival in patients with unmethylated MGMT promoter. HeberFERON is a co-formulation of IFNs type I and II with higher antiproliferative effect over glioblastoma cell lines than individual IFNs.

View Article and Find Full Text PDF

The rational combination of recombinant IFN-α2b and IFN-γ resulted in a new formulation of interferons (HeberFERON) with improved pharmacodynamics. In basal cell carcinomas HeberFERON produces a more rapid antitumor effect and results in a larger number of complete responses. In patients with glioblastoma multiforme, the administration of HeberFERON after surgery and radiotherapy results in an estimated overall survival of 19 months.

View Article and Find Full Text PDF