Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We present a systematic study of electron-correlation and relativistic effects in diatomic molecular species of the heaviest halogen astatine (At) within relativistic single- and multireference coupled-cluster approaches and relativistic density functional theory. We establish revised reference ab initio data for the ground states of At, HAt, AtAu, and AtO using a highly accurate relativistic effective core potential model and in-house basis sets developed for accurate modeling of molecules with large spin-orbit effects. Spin-dependent relativistic effects on chemical bonding in the ground state are comparable to the binding energy or even exceed it in At. Electron-correlation effects near the equilibrium internuclear separation are mostly dynamical and can be adequately captured using single-reference CCSD(T). However, bond elongation in At and, especially, AtO results in rapid manifestation of its multireference character. While useful for evaluating the spin-orbit effects on the ground-state bonding and properties, the two-component density functional theory lacks predictive power, especially in combination with popular empirically adjusted exchange-correlation functionals. This drawback supports the necessity to develop new functionals for reliable quantum-chemical models of heavy-element compounds with strong relativistic effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.2c06039 | DOI Listing |