Cloning and characterization of thermostable amylopullulanase TbbApu and its C-terminal truncated variants with enhanced activity in organic solvents.

Enzyme Microb Technol

Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Turkey; Istanbul Technical University, Dr. Orhan Ocalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Turkey. Electronic address:

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bifunctional debranching-enzyme amylopullulanases belong to the glycoside hydrolases (GHs) family and catalyze both the hydrolysis of α-1,4 and α-1,6 glycosidic bonds in starch, pullulan, amylopectin and glycogen polysaccharides. Among these, especially thermostable ones are essential in starch processing applications. In this study, we focused to elucidate the complete sequence of the apu gene and the role of C-term domains on biochemical properties and enzyme activity of Thermoanaerobacter brockii brockii amylopullulanase (TbbApu). After the gene sequence was defined, C- term truncated variants were constructed. The most suitable host organism and expression vector were determined as E. coli BL21(DE3) and pET-28a(+) depending on the highest yield/biomass ratio for recombinant production of all constructs. It was seen that the expression yield increased approximately threefold in the case of the SH3 region truncation. In the biochemical characterization, TbbApu and its truncated variants exhibited maximum activity at 70 °C and 75 °C for pullulan and starch hydrolysis respectively, and the optimum pH of TbbApu were 6.5 and 6 for truncated variants. Moreover, hydrolysis activities of all recombinant enzymes were enhanced by Mn, Co and Cu, detergents, and almost all organic solvents; except butanol, DMF and DMSO. All recombinant amylopullulanases remained 80% stable up to 80 °C in the wide range of pH and also retained > 85% stability in the presence of defined volatile organic solvents. No significant difference was observed between the raw starch adsorption capacity and the specific activity of the three variants. These results indicated that the C-terminal regions of TbbApu are non-essential for the enzyme activity, stability and substrate binding capacity; furthermore, hexane and acetone organic solvents enhanced both pullulanase and α-amylase activity of these enzymes, interestingly. With these features, TbbApu and its truncated variants are distinguished from other thermophilic amylopullulanases and also make them promising candidates for industrial use.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.enzmictec.2022.110176DOI Listing

Publication Analysis

Top Keywords

truncated variants
20
organic solvents
16
tbbapu truncated
12
amylopullulanase tbbapu
8
enzyme activity
8
tbbapu
6
variants
6
activity
6
truncated
5
cloning characterization
4

Similar Publications

Development of a reverse genetics system for West Nile virus (Kunjin type).

Front Vet Sci

August 2025

Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China.

Kunjin virus (KUNV), a naturally attenuated strain of West Nile virus (WNV), shares similar transmission modes and hosts-primarily mosquitoes, birds, and horses. Globally, reverse genetics is the principal methodology for characterizing the molecular etiology of flaviviruses. In this study, cytomegalovirus (CMV) promoter-driven KUNV reporter replicons were engineered to incorporate three distinct reporter genes: Nanoluc, oxGFP, and mCherry.

View Article and Find Full Text PDF

Using an in situ nucleosome stability assay based on salt extraction, we identified distinct stability features of H2A.Z-containing nucleosomes linked to alternative interactions of the histone variant's C-terminal tail (Imre et al., Nat.

View Article and Find Full Text PDF

The parasitic protozoan Trypanosoma brucei has a single mitochondrial nucleoid, anchored to the basal body of the flagellum via the tripartite attachment complex (TAC). The detergent-insoluble TAC is essential for mitochondrial genome segregation during cytokinesis. The TAC assembles de novo in a directed way from the probasal body towards the kDNA.

View Article and Find Full Text PDF

A Novel Homozygous Nonsense Pathogenic Variant of the CPAMD8 Gene Associated With Congenital Microcoria.

Clin Genet

September 2025

Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Harbin, Heilongjiang Province, People's Republic of China.

Congenital microcoria (MCOR) is a rare inherited ocular disorder. Here, we describe a novel nonsense variant in the CPAMD8 gene in a patient with MCOR. We conducted a comprehensive clinical examination of a patient diagnosed with MCOR and performed whole-exome sequencing to identify potential pathogenic variants.

View Article and Find Full Text PDF

Unopposed platelet activation can be associated with pathologic thrombosis. An intact growth arrest-specific gene 6 (GAS6)/Mer receptor tyrosine kinase (MERTK) signaling pathway contributes importantly to potentiating platelet activation triggered by molecular agonists ex vivo and thrombus stabilization in vivo. We describe, herein, the inhibition of platelet function and stable thrombus formation conferred by iMer, a naturally occurring MERTK splice variant, that acts as a GAS6 decoy receptor and decreases phosphorylation of MERTK.

View Article and Find Full Text PDF