A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Application of deep learning as an ancillary diagnostic tool for thyroid FNA cytology. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Several studies have used artificial intelligence (AI) to analyze cytology images, but AI has yet to be adopted in clinical practice. The objective of this study was to demonstrate the accuracy of AI-based image analysis for thyroid fine-needle aspiration cytology (FNAC) and to propose its application in clinical practice.

Methods: In total, 148,395 microscopic images of FNAC were obtained from 393 thyroid nodules to train and validate the data, and EfficientNetV2-L was used as the image-classification model. The 35 nodules that were classified as atypia of undetermined significance (AUS) were predicted using AI training.

Results: The precision-recall area under the curve (PR AUC) was >0.95, except for poorly differentiated thyroid carcinoma (PR AUC = 0.49) and medullary thyroid carcinoma (PR AUC = 0.91). Poorly differentiated thyroid carcinoma had the lowest recall (35.4%) and was difficult to distinguish from papillary thyroid carcinoma, medullary thyroid carcinoma, and follicular thyroid carcinoma. Follicular adenomas and follicular thyroid carcinomas were distinguished from each other by 86.7% and 93.9% recall, respectively. For two-dimensional mapping of the data using t-distributed stochastic neighbor embedding, the lymphomas, follicular adenomas, and anaplastic thyroid carcinomas were divided into three, two, and two groups, respectively. Analysis of the AUS nodules showed 94.7% sensitivity, 14.4% specificity, 56.3% positive predictive value, and 66.7% negative predictive value.

Conclusions: The authors developed an AI-based approach to analyze thyroid FNAC cases encountered in routine practice. This analysis could be useful for the clinical management of AUS and follicular neoplasm nodules (e.g., an online AI platform for thyroid cytology consultations).

Download full-text PDF

Source
http://dx.doi.org/10.1002/cncy.22669DOI Listing

Publication Analysis

Top Keywords

thyroid carcinoma
24
thyroid
13
differentiated thyroid
8
medullary thyroid
8
carcinoma follicular
8
follicular thyroid
8
follicular adenomas
8
thyroid carcinomas
8
carcinoma
6
follicular
5

Similar Publications