Curious Case of Singlet Triplet Gaps in Nonlinear Polyaromatic Hydrocarbons.

J Phys Chem Lett

School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata700032, India.

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The singlet triplet (ST) gap of linear polyacenes decays exponentially with the system size as a result of extended conjugation and reducing highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps. These low ST gaps can ideally be leveraged toward energy applications but are hindered by the decreasing stability of the systems. Thus, there is the need to understand the ST gap of nonlinear polyacenes, which are markedly more stable than their linear counterparts. Here, we show that the ST gaps of the nonlinear polyacenes do not decrease with the system size and have no correlation with the HOMO-LUMO gaps or increased conjugation. The reason behind this is identified as the high multireference character of the triplet high-spin state. These unprecedented results are in stark contrast to the observations in linear polyacenes and are due to the combined effects of topology and geometrical factors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.2c03170DOI Listing

Publication Analysis

Top Keywords

singlet triplet
8
gaps nonlinear
8
linear polyacenes
8
system size
8
molecular orbital
8
nonlinear polyacenes
8
gaps
5
curious case
4
case singlet
4
triplet gaps
4

Similar Publications

Homogeneous Catalysts for Hydrogenative PHIP Used in Biomedical Applications.

Anal Sens

January 2025

Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 United States.

At present, two competing hyperpolarization (HP) techniques, dissolution dynamic nuclear polarization (DNP) and parahydrogen (para-H) induced polarization (PHIP), can generate sufficiently high liquid state C signal enhancement for in vivo studies. PHIP utilizes the singlet spin state of para-H to create non-equilibrium spin populations. In hydrogenative PHIP, para-H is irreversibly added to unsaturated precursors, typically in the presence of a homogeneous catalyst.

View Article and Find Full Text PDF

The electron-deficient oxidant 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) has recently emerged as a promising visible-light photoredox catalyst. However, its excited-state behavior remains poorly understood. Here, we investigate the ultrafast dynamics of photoexcited DDQ in acetonitrile using transient electronic and infrared absorption spectroscopy, supported by quantum chemical calculations.

View Article and Find Full Text PDF

Spin Qubit Properties of the Boron-Vacancy/Carbon Defect in the Two-Dimensional Hexagonal Boron Nitride.

J Phys Condens Matter

September 2025

Department of Physics, Tuskegee University, 1200 West Montgomery Road, 106 Chappie James, Tuskegee, Alabama, 36088-1920, UNITED STATES.

Spin qubit defects in two-dimensional materials have a number of advantages over those in three-dimensional hosts including simpler technologies for the defect creation and control, as well as qubit accessibility. In this work, we select the VBCB defect in the hexagonal boron nitride (hBN) as a possible optically controllable spin qubit and explain its triplet ground state and neutrality. In this defect a boron vacancy is combined with a carbon dopant substituting the closest boron atom to the vacancy.

View Article and Find Full Text PDF

Effect of Oxygen Exposure on the Triplet Excitation Dynamics of the Monomeric LHCII Complex from Spinach.

J Phys Chem B

September 2025

Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.

Light-harvesting complex IIs (LHCIIs) are the major antenna in higher plants, balancing light capture through photoprotection. While it naturally forms trimers, stress conditions can induce monomerization, altering pigment interactions. Here, we explored how molecular oxygen affects triplet excited-state dynamics in LHCII monomers using time-resolved transient absorption spectroscopy under aerobic and anaerobic conditions.

View Article and Find Full Text PDF

B,N-substituted graphene ribbons are computationally designed and their spectroscopic properties are systematically explored with wave-function-based electronic structure methods. All B,N-graphene ribbons exhibit exceptionally small S-T energy gaps. The oscillator strength of the S-S transition increases monotonically with the length of the ribbons.

View Article and Find Full Text PDF