Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Antibiotic resistance is emerging as a "global public health concern". To address the growing epidemic of multidrug-resistant pathogens, the development of novel antimicrobials is urgently needed. In this study, by biomimicking cationic antibacterial peptides, we designed and synthesized a series of new membrane-active nonivamide and capsaicin derivatives as peptidomimetic antimicrobials. Through modulating charge/hydrophobicity balance and rationalizing structure-activity relationships of these peptidomimetics, compound was identified as the lead compound. Compound exhibited potent antibacterial activity against both Gram-positive bacteria (MICs = 0.39-0.78 μg/mL) and Gram-negative bacteria (MICs = 1.56-6.25 μg/mL), with low hemolytic activity and low cytotoxicity. Compound displayed a faster bactericidal action through a membrane-disruptive mechanism and avoided bacterial resistance development. Furthermore, compound significantly reduced the microbial burden in a murine model of keratitis infected by or Hence, this design strategy can provide a promising and effective solution to overcome antibiotic resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.2c01604 | DOI Listing |