Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A novel La-Co-O-C (LC-C) composites were prepared via a facile co-hydrothermal route with oxides and glycerol and further optimized for methane catalytic activity and thermal stability via component regulation. It was demonstrated that CoO phase was the main component in regulation. The combined results of X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption of oxygen (O-TPD), temperature-programmed reduction of hydrogen (H-TPR), temperature-programmed desorption of ammonia/carbon dioxide (NH/CO-TPD) revealed that component regulation led to more oxygen vacancies and exposure of surface Co, lower surface basicity and optimized acidity, which were beneficial for adsorption of active oxygen species and activation of methane molecules, resulting in the excellent catalytic oxidation performance. Especially, the (3.5)LC-C (3.5 is Co-to-La molar ratio) showed the optimum activity and the T and T (the temperature at which the CH conversion rate was 50% and 90%, respectively) were 318 and 367°C, respectively. Using theoretical calculations and in situ diffuse reflection infrared Fourier transform spectroscopy characterization, it was also found that the catalytic mechanism changes from the "Rideal-Eley" mechanism to the "Two-term" mechanism depending on the temperature windows in which the reaction takes place. Besides, the use of the "Flynn-Wall-Ozawa" model in thermoanalytical kinetics revealed that component regulation simultaneously optimized the decomposition activation energy, further expanding the application scope of carbon-containing composites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2022.04.002DOI Listing

Publication Analysis

Top Keywords

component regulation
20
novel la-co-o-c
8
thermal stability
8
temperature-programmed desorption
8
revealed component
8
component
5
regulation novel
4
la-co-o-c composite
4
composite catalyst
4
catalyst boosted
4

Similar Publications

Protein translation regulation is critical for cellular responses and development, yet how elongation stage disruptions shape these processes remains incompletely understood. Here, we identify a single amino acid substitution (P55Q) in the ribosomal protein RPL-36A of Caenorhabditis elegans that confers complete resistance to the elongation inhibitor cycloheximide (CHX). Heterozygous animals carrying both wild-type RPL-36A and RPL-36A(P55Q) develop normally but show intermediate CHX resistance, indicating a partial dominant effect.

View Article and Find Full Text PDF

Garlic is an important bulb vegetable which is used for both culinary and medical purposes worldwide. In vitro propagation is considered a promising technic for production and conservation of disease-free garlic seed. The efficiency of in vitro culture was studied for micropropagation of native Iranian garlic genotypes.

View Article and Find Full Text PDF

Dynamic regulation of the oxidative stress response by the E3 ligase TRIP12.

Cell Rep

September 2025

Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berk

Centered on the transcription factor NRF2 and its E3 ligase CUL3, the oxidative stress response protects cells from damage by reactive oxygen species (ROS). Increasing ROS inhibits CUL3 to stabilize NRF2 and elicit antioxidant gene expression, while cells recovering from stress rapidly turn over NRF2 again to prevent reductive stress and oxeiptosis-dependent death. How cells reinitiate NRF2 degradation after ROS have been cleared remains poorly understood.

View Article and Find Full Text PDF

Transcription initiation factor TFIID subunit 1 (TAF1) is a pivotal component of the TFIID complex, critical for RNA polymerase II-mediated transcription initiation. However, the molecular basis by which TAF1 recognizes and associates with chromatin remains incompletely understood. Here, we report that the tandem bromodomain module of TAF1 engages nucleosomal DNA through a distinct positively charged surface patch on the first bromodomain (BD1).

View Article and Find Full Text PDF

Drought stress is the most vulnerable abiotic factor affecting plant growth and yield. The use of silicic acid as seed priming treatment is emerging as an effective approach to regulate maize plants susceptibility to water stress. The study was formulated for investigating the effect of silicic acid seed priming treatment in modulating the oxidative defense and key physio-biochemical attributes of maize plants under drought stress conditions.

View Article and Find Full Text PDF