A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An automatic segmentation method with self-attention mechanism on left ventricle in gated PET/CT myocardial perfusion imaging. | LitMetric

An automatic segmentation method with self-attention mechanism on left ventricle in gated PET/CT myocardial perfusion imaging.

Comput Methods Programs Biomed

School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China; Pazhou Lab, Guangzhou, China. Electronic address:

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: We aimed to propose an automatic segmentation method for left ventricular (LV) from 16 electrocardiogram (ECG) -gated N-NH PET/CT myocardial perfusion imaging (MPI) to improve the performance of LV function assessment.

Methods: Ninety-six cases with confirmed or suspected obstructive coronary artery disease (CAD) were enrolled in this research. The LV myocardial contours were delineated by physicians as ground truth. We developed an automatic segmentation method, which introduces the self-attention mechanism into 3D U-Net to capture global information of images so as to achieve fine segmentation of LV. Three cross-validation tests were performed on each gate (64 vs. 32 for training vs. validation). The effectiveness was validated by quantitative metrics (modified hausdorff distance, MHD; dice ratio, DR; 3D MHD) as well as cardiac functional parameters (end-systolic volume, ESV; end-diastolic volume, EDV; ejection fraction, EF). Furthermore, the feasibility of the proposed method was also evaluated by intra- and inter-observers with DR and 3D-MHD.

Results: Compared with backbone network, the proposed approach improved the average DR from 0.905 ± 0.0193 to 0.9202 ± 0.0164, and decreased the average 3D MHD from 0.4611 ± 0.0349 to 0.4304 ± 0.0339. The average relative error of LV volume between proposed method and ground truth is 1.09±3.66%, and the correlation coefficient is 0.992 ± 0.007 (P < 0.001). The EDV, ESV, EF deduced from the proposed approach were highly correlated with ground truth (r ≥ 0.864, P < 0.001), and the correlation with commercial software is fair (r ≥ 0.871, P < 0.001). DR and 3D MHD of contours and myocardium from two observers are higher than 0.899 and less than 0.5194.

Conclusion: The proposed approach is highly feasible for automatic segmentation of the LV cavity and myocardium, with potential to benefit the precision of LV function assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2022.107267DOI Listing

Publication Analysis

Top Keywords

automatic segmentation
12
segmentation method
12
self-attention mechanism
8
pet/ct myocardial
8
myocardial perfusion
8
perfusion imaging
8
ground truth
8
proposed method
8
method
5
method self-attention
4

Similar Publications