Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Disclosure of markers that are significantly associated with plant traits can help develop new varieties with desirable properties. This study determined the genome-wide associations based on DArTseq markers for six agronomic traits assessed in eight environments for wheat. Moreover, the association study for heterosis and analysis of the effects of markers grouped by linkage disequilibrium were performed based on mean values over all experiments. All results were validated using data from post-registration trials. GWAS revealed 1273 single nucleotide polymorphisms with biologically significant effects. Most polymorphisms were predicted to be modifiers of protein translation, with only two having a more pronounced effect. Markers significantly associated with the considered set of features were clustered within chromosomes based on linkage disequilibrium in 327 LD blocks. A GWAS for heterosis revealed 1261 markers with significant effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740285 | PMC |
http://dx.doi.org/10.3390/ijms232315321 | DOI Listing |