A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Using Genomic Variation to Distinguish Ovarian High-Grade Serous Carcinoma from Benign Fallopian Tubes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: The preoperative diagnosis of pelvic masses has been elusive to date. Methods for characterization such as CA-125 have had limited specificity. We hypothesize that genomic variation can be used to create prediction models which accurately distinguish high grade serous ovarian cancer (HGSC) from benign tissue.

Methods: In this retrospective, pilot study, we extracted DNA and RNA from HGSC specimens and from benign fallopian tubes. Then, we performed whole exome sequencing and RNA sequencing, and identified single nucleotide variants (SNV), copy number variants (CNV) and structural variants (SV). We used these variants to create prediction models to distinguish cancer from benign tissue. The models were then validated in independent datasets and with a machine learning platform.

Results: The prediction model with SNV had an AUC of 1.00 (95% CI 1.00-1.00). The models with CNV and SV had AUC of 0.87 and 0.73, respectively. Validated models also had excellent performances.

Conclusions: Genomic variation of HGSC can be used to create prediction models which accurately discriminate cancer from benign tissue. Further refining of these models (early-stage samples, other tumor types) has the potential to lead to detection of ovarian cancer in blood with cell free DNA, even in early stage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738935PMC
http://dx.doi.org/10.3390/ijms232314814DOI Listing

Publication Analysis

Top Keywords

genomic variation
12
create prediction
12
prediction models
12
benign fallopian
8
fallopian tubes
8
models accurately
8
ovarian cancer
8
cancer benign
8
benign tissue
8
models
7

Similar Publications