A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An approach to help differentiate postinfarct scar from borderzone tissue using Ripple Mapping during ventricular tachycardia ablation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Ventricular scar is traditionally highlighted on a bipolar voltage (BiVolt) map in areas of myocardium <0.50 mV. We describe an alternative approach using Ripple Mapping (RM) superimposed onto a BiVolt map to differentiate postinfarct scar from conducting borderzone (BZ) during ventricular tachycardia (VT) ablation.

Methods: Fifteen consecutive patients (left ventricular ejection fraction 30 ± 7%) underwent endocardial left ventricle pentaray mapping (median 5148 points) and ablation targeting areas of late Ripple activation. BiVolt maps were studied offline at initial voltage of 0.50-0.50 mV to binarize the color display (red and purple). RMs were superimposed, and the BiVolt limits were sequentially reduced until only areas devoid of Ripple bars appeared red, defined as RM-scar. The surrounding area supporting conducting Ripple wavefronts in tissue <0.50 mV defined the RM-BZ.

Results: RM-scar was significantly smaller than the traditional 0.50 mV cutoff (median 4% vs. 12% shell area, p < .001). 65 ± 16% of tissue <0.50 mV supported Ripple activation within the RM-BZ. The mean BiVolt threshold that differentiated RM-scar from BZ tissue was 0.22 ± 0.07 mV, though this ranged widely (from 0.12 to 0.35 mV). In this study, septal infarcts (7/15) were associated with more rapid VTs (282 vs. 347 ms, p = .001), and had a greater proportion of RM-BZ to RM-scar (median ratio 3.2 vs. 1.2, p = .013) with faster RM-BZ conduction speed (0.72 vs. 0.34 m/s, p = .001). Conversely, scars that supported hemodynamically stable sustained VT (6/15) were slower (367 ± 38 ms), had a smaller proportion of RM-BZ to RM-scar (median ratio 1.2 vs. 3.2, p = .059), and slower RM-BZ conduction speed (0.36 vs. 0.63 m/s, p = .036). RM guided ablation collocated within 66 ± 20% of RM-BZ, most concentrated around the RM-scar perimeter, with significant VT reduction (median 4.0 episodes preablation vs. 0 post, p < .001) at 11 ± 6 months follow-up.

Conclusion: Postinfarct scars appear significantly smaller than traditional 0.50 mV cut-offs suggest, with voltage thresholds unique to each patient.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jce.15766DOI Listing

Publication Analysis

Top Keywords

approach help
4
help differentiate
4
differentiate postinfarct
4
postinfarct scar
4
scar borderzone
4
borderzone tissue
4
tissue ripple
4
ripple mapping
4
mapping ventricular
4
ventricular tachycardia
4

Similar Publications