Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Via hydrothermal synthesis of Sn-Al gels, mild dealumination and ion exchange, a bimetallic Sn-Ni-Beta catalyst was prepared which can convert glucose to methyl lactate (MLA) and methyl vinyl glycolate (MVG) in methanol at yields of 71.2 % and 10.2 %, respectively. Results from solid-state magic-angle spinning nuclear magnetic resonance, X-ray photoelectron spectroscopy, transmission electron microscopy, spectroscopic analysis, probe-temperature-programmed desorption, and density functional theory calculations conclusively reveal that the openness of the Sn sites, such as by the formation of [(SiO) -Sn-OH] entities, is governed by an adjacent metal cation such as Ni , Co , and Mn . This relies on the low structure-defective pore channel, provided by the current synthesis scheme, and the specific silica hydroxyl anchor point is associated with the incorporation of Sn for additional and precise metal ion localization. The presence of metal cations significantly improved the catalytic performance of Sn-Ni-Beta for glucose isomerization and conversion to MLA of sugar compared with Sn-Beta.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202215737 | DOI Listing |