A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Pannexin 1 activity in astroglia sets hippocampal neuronal network patterns. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Astroglial release of molecules is thought to actively modulate neuronal activity, but the nature, release pathway, and cellular targets of these neuroactive molecules are still unclear. Pannexin 1, expressed by neurons and astrocytes, form nonselective large pore channels that mediate extracellular exchange of molecules. The functional relevance of these channels has been mostly studied in brain tissues, without considering their specific role in different cell types, or in neurons. Thus, our knowledge of astroglial pannexin 1 regulation and its control of neuronal activity remains very limited, largely due to the lack of tools targeting these channels in a cell-specific way. We here show that astroglial pannexin 1 expression in mice is developmentally regulated and that its activation is activity-dependent. Using astrocyte-specific molecular tools, we found that astroglial-specific pannexin 1 channel activation, in contrast to pannexin 1 activation in all cell types, selectively and negatively regulates hippocampal networks, with their disruption inducing a drastic switch from bursts to paroxysmal activity. This decrease in neuronal excitability occurs via an unconventional astroglial mechanism whereby pannexin 1 channel activity drives purinergic signaling-mediated regulation of hyperpolarisation-activated cyclic nucleotide (HCN)-gated channels. Our findings suggest that astroglial pannexin 1 channel activation serves as a negative feedback mechanism crucial for the inhibition of hippocampal neuronal networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9728857PMC
http://dx.doi.org/10.1371/journal.pbio.3001891DOI Listing

Publication Analysis

Top Keywords

astroglial pannexin
12
pannexin channel
12
pannexin
8
hippocampal neuronal
8
neuronal activity
8
cell types
8
channel activation
8
neuronal
5
astroglial
5
pannexin activity
4

Similar Publications