Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The reduced chromite ore processing residue (rCOPR) deposited in environments is susceptible to surrounding factors and causes reoccurrence of Cr(VI). However, the impact of natural sunlight on the stability of rCOPR is still unexplored. Herein, we investigated the dissolution and transformation behaviors of Cr(III)-Fe(III) hydroxide, a typical Cr(III)-containing component in rCOPR, under visible light. At acidic conditions, the release rate of Cr(III) under illumination markedly increased, up to 7 times higher than that in the dark, yet no Cr(VI) was produced. While at basic conditions, only Cr(VI) was obtained by photo-oxidation, with an oxidation rate of ∼7 times higher than that by δ-MnO under dark conditions at pH 10, but no reactive oxygen species was generated. X-ray absorption near-edge structure and density functional theory analyses reveal that coexisting Fe in the solid plays a critical role in the pH-dependent release and transformation of Cr(III), where photogenerated Fe(II) accelerates Cr(III) produced at acidic conditions. Meanwhile, at basic conditions, the production of intermediate Cr(III)-Fe(III) clusters by light leads to the oxidation of Cr(III) into Cr(VI) through the nonradical "metal-to-metal charge transfer" mechanism. Our study provides a new insight into Cr(VI) reoccurrence in rCOPR and helps in predicting its environmental risk in nature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.2c05775 | DOI Listing |