A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Visible Light Accelerates Cr(III) Release and Oxidation in Cr-Fe Chromite Residues: An Overlooked Risk of Cr(VI) Reoccurrence. | LitMetric

Visible Light Accelerates Cr(III) Release and Oxidation in Cr-Fe Chromite Residues: An Overlooked Risk of Cr(VI) Reoccurrence.

Environ Sci Technol

National Engineering Laboratory for VOCs Pollution Control Materials & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing101408, P. R. China.

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The reduced chromite ore processing residue (rCOPR) deposited in environments is susceptible to surrounding factors and causes reoccurrence of Cr(VI). However, the impact of natural sunlight on the stability of rCOPR is still unexplored. Herein, we investigated the dissolution and transformation behaviors of Cr(III)-Fe(III) hydroxide, a typical Cr(III)-containing component in rCOPR, under visible light. At acidic conditions, the release rate of Cr(III) under illumination markedly increased, up to 7 times higher than that in the dark, yet no Cr(VI) was produced. While at basic conditions, only Cr(VI) was obtained by photo-oxidation, with an oxidation rate of ∼7 times higher than that by δ-MnO under dark conditions at pH 10, but no reactive oxygen species was generated. X-ray absorption near-edge structure and density functional theory analyses reveal that coexisting Fe in the solid plays a critical role in the pH-dependent release and transformation of Cr(III), where photogenerated Fe(II) accelerates Cr(III) produced at acidic conditions. Meanwhile, at basic conditions, the production of intermediate Cr(III)-Fe(III) clusters by light leads to the oxidation of Cr(III) into Cr(VI) through the nonradical "metal-to-metal charge transfer" mechanism. Our study provides a new insight into Cr(VI) reoccurrence in rCOPR and helps in predicting its environmental risk in nature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c05775DOI Listing

Publication Analysis

Top Keywords

visible light
8
accelerates criii
8
crvi reoccurrence
8
acidic conditions
8
times higher
8
basic conditions
8
crvi
6
criii
5
conditions
5
light accelerates
4

Similar Publications