A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Soybean polysaccharide fermentation products regulate the air-liquid interface in co-cultured Caco-2 cells by increasing short chain fatty acids transport. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soybean polysaccharides have a large molecular weight and complex structure, which is not conducive to body absorption and exerting their biological activities. After the in vitro hydrolysate digestion of soybean polysaccharides, their interactions with intestinal epithelial cell monolayers during soybean polysaccharide-derived short chain fatty acids (SCFAs) uptake and transport were determined by co-culturing soybean polysaccharide hydrolysate products with Caco-2 cells. Based on prepared soybean polysaccharide hydrolysates, physicochemical indices and hydrolysate components were explored and the interface characteristics between SCFAs and Caco-2 cells were characterized using interfacial rheology methods for the first time. Transwell chambers were used to explore relationships between SCFAs transport and the air-liquid interface in Caco-2 cells. We showed that physicochemical properties, cell proliferation rates, and the interfacial tension of soybean polysaccharide hydrolysis products were related to fermentation times, with differences observed between the two hydrolyzed soybean polysaccharides (microwave ammonium oxalate soy hull polysaccharides (MASP) and soluble soy polysaccharides (SSP)). MASP outperformed SSP in terms of total sugar utilization and added cellular value by intestinal flora. Hydrolyzed soybean polysaccharides decreased interfacial tension with increasing hydrolysis times when modulating the interfacial properties of a Caco-2 cell co-culture system. SCFAs translocation rates increased with fermentation time, from 0 h to 24 h. Also, a negative correlation was observed between SCFAs translocation rates and interfacial tension. Our data provide a foundation for the intestinal absorption of soybean polysaccharides and at the same time bring new insights into the interactions between polysaccharides and food in the future, promoting the application of polysaccharides in food processing and even medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2022.112136DOI Listing

Publication Analysis

Top Keywords

soybean polysaccharides
20
soybean polysaccharide
16
caco-2 cells
16
interfacial tension
12
soybean
10
polysaccharides
9
air-liquid interface
8
short chain
8
chain fatty
8
fatty acids
8

Similar Publications