98%
921
2 minutes
20
Traits are key for understanding the environmental responses and ecological roles of organisms. Trait approaches to functional ecology are well established for plants, whereas consistent frameworks for animal groups are less developed. Here we suggest a framework for the study of the functional ecology of animals from a trait-based response-effect approach, using dung beetles as model system. Dung beetles are a key group of decomposers that are important for many ecosystem processes. The lack of a trait-based framework tailored to this group has limited the use of traits in dung beetle functional ecology. We review which dung beetle traits respond to the environment and affect ecosystem processes, covering the wide range of spatial, temporal and biological scales at which they are involved. Dung beetles show trait-based responses to variation in temperature, water, soil properties, trophic resources, light, vegetation structure, competition, predation and parasitism. Dung beetles' influence on ecosystem processes includes trait-mediated effects on nutrient cycling, bioturbation, plant growth, seed dispersal, other dung-based organisms and parasite transmission, as well as some cases of pollination and predation. We identify 66 dung beetle traits that are either response or effect traits, or both, pertaining to six main categories: morphology, feeding, reproduction, physiology, activity and movement. Several traits pertain to more than one category, in particular dung relocation behaviour during nesting or feeding. We also identify 136 trait-response and 77 trait-effect relationships in dung beetles. No response to environmental stressors nor effect over ecological processes were related with traits of a single category. This highlights the interrelationship between the traits shaping body-plans, the multi-functionality of traits, and their role linking responses to the environment and effects on the ecosystem. Despite current developments in dung beetle functional ecology, many knowledge gaps remain, and there are biases towards certain traits, functions, taxonomic groups and regions. Our framework provides the foundations for the thorough development of trait-based dung beetle ecology. It also serves as an example framework for other taxa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099951 | PMC |
http://dx.doi.org/10.1111/1365-2656.13829 | DOI Listing |
Naturwissenschaften
September 2025
Laboratório de Ecologia E Conservação de Invertebrados, LECIN, Departamento de Ecologia E Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, PO Box 3037, CEP 37.203-202, Lavras, MG, Brasil.
Fire is a key natural disturbance influencing physical, chemical, and biological processes in the Cerrado. Ash, a fire byproduct, may significantly influence soil macrofauna through its chemical properties. Dung beetles (Scarabaeinae), critical components of Cerrado soil macrofauna, provide key ecological functions and services.
View Article and Find Full Text PDFFront Insect Sci
August 2025
Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin, Italy.
Dung beetles (Coleoptera, Scarabaeoidea) support several ecological processes and services making them important ecosystem engineers. The dung beetle gut microbiota is involved in many of these ecological services. In the present study, we analyzed the microbiota of 90 individuals of three species feeding on different dung types.
View Article and Find Full Text PDFZoolog Sci
August 2025
Department of Biological Science, Fukuyama University, Higashimura-cho, Fukuyama 729-0292, Japan.
An understanding of the food web in forest ecosystems is essential to ensuring that society lives in harmony with nature; however, this can be challenging in areas mainly composed of forest environments, such as in the Japanese Archipelago. Examining fecal samples collected from the forest edge can aid in determining the ecological roles of host species. In this study, a DNA barcoding method using original primers was applied to identify the carnivoran host species from fecal samples.
View Article and Find Full Text PDFPLoS One
September 2025
School of Professional Studies, University of Kansas Edwards Campus, Overland Park, Kansas, United States of America.
In this study, an adaptive force-position-speed collaborative process planning framework for robot polishing was proposed to improve the stability of the robot polishing process. The material removal model based on Preston's theory was studied, and the factors of polishing pressure, tool speed, feed speed, and sandpaper type were considered to design the manual polishing experiment. The improved Dung Beetle Optimization algorithm, Back Propagation Neural Network, Finite Element Analysis, and Response Surface Methodology provide a strong guarantee for the selection of robot polishing process parameters.
View Article and Find Full Text PDFProc Biol Sci
September 2025
Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA, USA.
Some phenotypic dimensions are more developmentally variable than others. Such developmental variability (or bias) is common and uncontroversial. However, how and at what time scales these biases constrain or facilitate the emergence of standing genetic variation, plastic responses, as well as adaptation remains contentious.
View Article and Find Full Text PDF