Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objectives: One of the risk factors for cerebral hyperperfusion following carotid endarterectomy (CEA) is a chronic reduction in cerebral perfusion pressure due to internal carotid artery (ICA) stenosis, which is clinically detected as increased cerebral blood volume (CBV). The perfusion fraction (f) is one of the intra-voxel incoherent motion (IVIM) parameters obtained using magnetic resonance (MR) imaging that theoretically reflects CBV. The present study aimed to determine whether preoperative IVIM-f on MR imaging predicts development of cerebral hyperperfusion following CEA.
Materials And Methods: Sixty-eight patients with unilateral ICA stenosis (≥ 70%) underwent preoperative diffusion-weighted 3-T MR imaging, and IVIM-f maps were generated from these data. Quantitative brain perfusion single-photon emission computed tomography (SPECT) was performed before and immediately after CEA. Regions-of-interest (ROIs) were automatically placed in the bilateral middle cerebral artery territories in all images using a three-dimensional stereotactic ROI template, and affected-to-contralateral ratios in the ROIs were calculated on IVIM-f maps.
Results: Nine patients (13%) exhibited postoperative hyperperfusion (cerebral blood flow increases of ≥ 100% compared with preoperative values in the ROIs on brain perfusion SPECT). Only high IVIM-f ratios were significantly associated with the occurrence of postoperative hyperperfusion (95% confidence interval, 253.8-6774.2; p = 0.0031) on logistic regression analysis. The sensitivity, specificity, and positive and negative predictive values of the IVIM-f ratio to predict the occurrence of postoperative hyperperfusion were 100%, 81%, 45%, and 100%, respectively.
Conclusions: Preoperative IVIM-f on MR imaging can predict development of cerebral hyperperfusion following CEA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2022.106909 | DOI Listing |