98%
921
2 minutes
20
Based on the large specific surface area and excellent adsorption potential of graphene quantum dots (GQDs) and zeolitic imidazolate framework-8 (ZIF-8) materials, a GQDs@ZIF-8 composite was constructed to achieve optimal matching of the microstructure and to acquire efficient adsorption of volatile organic compounds (VOCs). GQDs and ZIF-8 were synthesized and then compounded by the solution co-deposition method to obtain GQDs@ZIF-8 composites. GQDs were uniformly decorated on the surface of the ZIF-8 metal-organic framework (MOF), effectively restraining the agglomeration, improving the thermal stability of ZIF-8 and forming abundant active sites. Thus, the VOC removal percentage and adsorption capacity of the GQDs@ZIF-8 composites were significantly improved. Toluene and ethyl acetate were chosen as simulated VOC pollutants to test the adsorption performance of the composites. The results showed that, after the addition of GQDs, the adsorption property of GQDs@ZIF-8 composites for toluene and ethyl acetate was obviously improved, with maximum adsorption capacities of 552.31 mg/g and 1408.59 mg/g, respectively, and maximum removal percentages of 80.25% and 93.78%, respectively, revealing extremely high adsorption performance. Compared with raw ZIF-8, the maximum adsorption capacities of the composites for toluene and ethyl acetate were increased by 53.82 mg/g and 104.56 mg/g, respectively. The kinetics and isotherm study revealed that the adsorption processes were in accordance with the pseudo-first-order kinetic model and the Freundlich isotherm model. The thermodynamic results indicated that the adsorption process of the GQDs@ZIF-8 composites was a spontaneous, endothermic and entropy increase process. This study provides a new way to explore MOF-based adsorption materials with high adsorption capacity which have broad application prospects in VOC removal fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695402 | PMC |
http://dx.doi.org/10.3390/nano12224008 | DOI Listing |
Sud Med Ekspert
January 2025
Ural State Medical University, Ekaterinburg, Russia.
The article presents the study results of publications on the history of forensic medicine in the Forensic Medical Expertise journal for the 1958-2023. The data on the number of publications for the entire specified period are presented, the author's composition and their publication activities have been analyzed. The analysis of publications with classification by the same type of directionality was carried out, the most common thematic units are highlighted.
View Article and Find Full Text PDFJAMA Psychiatry
September 2025
School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia.
Importance: Cannabis is the most commonly used illicit drug, with 10% to 30% of regular users developing cannabis use disorder (CUD), a condition linked to altered hippocampal integrity. Evidence suggests high-intensity interval training (HIIT) enhances hippocampal structure and function, with this form of physical exercise potentially mitigating CUD-related cognitive and mental health impairments.
Objective: To determine the impact of a 12-week HIIT intervention on hippocampal integrity (ie, structure, connectivity, biochemistry) compared with 12 weeks of strength and resistance (SR) training in CUD.
Cereb Cortex
August 2025
Department of Psychology, University of Milano-Bicocca, Milan, Italy.
Semantic composition allows us to construct complex meanings (e.g., "dog house", "house dog") from simpler constituents ("dog", "house").
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
September 2025
School of Bioengineering and Biosciences, Department of Biochemistry, Lovely Professional University, Punjab, 144411, India.
Purpose: This study investigates codon usage and amino acid usage bias in the genus Acinetobacter to uncover the evolutionary forces shaping these patterns and their implications for pathogenicity and biotechnology.
Methods: Codon usage patterns were examined in representative genomes of the genus Acinetobacter using standard codon bias indices, including GC content, relative synonymous codon usage (RSCU), effective number of codons (ENC), and codon adaptation index (CAI). Neutrality and parity plots were employed to evaluate the relative influence of mutational pressure and natural selection on codon preferences.