A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Changes in permafrost spatial distribution and active layer thickness from 1980 to 2020 on the Tibet Plateau. | LitMetric

Changes in permafrost spatial distribution and active layer thickness from 1980 to 2020 on the Tibet Plateau.

Sci Total Environ

State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China; Department of Water Conservancy and Hydropower Engineering, Xihua University, Chengdu 610039, China.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Tibetan Plateau (TP) is experiencing extensive permafrost degradation due to climate change, which seriously threatens sustainable water and ecosystem management in the TP and its downstream areas. Understanding the evolution of permafrost is critical for studying changes in the water cycle, carbon flux, and ecology of the TP. In this study, we mapped the spatial distribution of permafrost and active layer thickness (ALT) at 1 km resolution for each decade using empirical models and machine learning methods validated with borehole data. A comprehensive comparison of model results and validation accuracy shows that the machine learning method is more advantageous in simulating the permafrost distribution, while the ALT simulated by the empirical model (i.e., Stefan model) better reflects the actual ALT distribution. We further evaluated the dynamics of permafrost distribution and ALT from 1980 to 2020 based on the results of the better-performing models, and analyzed the patterns and influencing factors of the changes in permafrost distribution and ALT. The results show that the permafrost area on the TP has decreased by 15.5 %, and the regionally average ALT has increased by 18.94 cm in the 2010s compared to the 1980s. The average decreasing rate of permafrost area is 6.33 × 10 km decade, and the average increasing rate of ALT is 6.31 cm decade. Permafrost degradation includes the decreasing permafrost area and the thickening active layer mainly related to the warming of the TP. Spatially, permafrost area decrease is more susceptible to occur at lower latitudes and lower altitudes, while ALT increases more dramatically at lower latitudes and higher altitudes. In addition, permafrost is more likely to degrade to seasonally frozen ground in areas with deeper ALT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.160381DOI Listing

Publication Analysis

Top Keywords

permafrost area
16
active layer
12
permafrost
12
permafrost distribution
12
distribution alt
12
alt
9
changes permafrost
8
spatial distribution
8
layer thickness
8
1980 2020
8

Similar Publications