A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

EXTENDED STOCHASTIC BLOCK MODELS WITH APPLICATION TO CRIMINAL NETWORKS. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reliably learning group structures among nodes in network data is challenging in several applications. We are particularly motivated by studying covert networks that encode relationships among criminals. These data are subject to measurement errors, and exhibit a complex combination of an unknown number of core-periphery, assortative and disassortative structures that may unveil key architectures of the criminal organization. The coexistence of these noisy block patterns limits the reliability of routinely-used community detection algorithms, and requires extensions of model-based solutions to realistically characterize the node partition process, incorporate information from node attributes, and provide improved strategies for estimation and uncertainty quantification. To cover these gaps, we develop a new class of extended stochastic block models (esbm) that infer groups of nodes having common connectivity patterns via Gibbs-type priors on the partition process. This choice encompasses many realistic priors for criminal networks, covering solutions with fixed, random and infinite number of possible groups, and facilitates the inclusion of node attributes in a principled manner. Among the new alternatives in our class, we focus on the Gnedin process as a realistic prior that allows the number of groups to be finite, random and subject to a reinforcement process coherent with criminal networks. A collapsed Gibbs sampler is proposed for the whole esbm class, and refined strategies for estimation, prediction, uncertainty quantification and model selection are outlined. The esbm performance is illustrated in realistic simulations and in an application to an Italian mafia network, where we unveil key complex block structures, mostly hidden from state-of-the-art alternatives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9681118PMC
http://dx.doi.org/10.1214/21-AOAS1595DOI Listing

Publication Analysis

Top Keywords

criminal networks
12
extended stochastic
8
stochastic block
8
block models
8
unveil key
8
partition process
8
node attributes
8
strategies estimation
8
uncertainty quantification
8
number groups
8

Similar Publications