A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

MS-proteomics provides insight into the host responses towards alginate microspheres. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Protein adsorption to biomaterial surfaces is considered a determining factor for the host response. Here we detail the protein adsorption profiles of alginate hydrogel microspheres relevant for cell therapy using mass spectrometry (MS)-based proteomics. The investigated microspheres include sulfated alginate (SA), high G alginate (HiG), and poly-l-lysine coated alginate (AP), which previously have been shown to exhibit different inflammatory and fibrotic responses. The biological significance was assessed in lepirudin-anticoagulated human whole blood (hWB) by functional analysis of the acute-phase responses (complement and coagulation). Proteomic profiling revealed distinct signatures for the microspheres, wherein Ingenuity Pathway Analysis identified complement and coagulation as the top enriched canonical pathways. The levels of complement and coagulation activators and inhibitors were distinctly different, which was reflected in the functional hWB analyses: SA was highly enriched with inhibitory factors of complement and coagulation (e.g. C1 inhibitor, factor H, antithrombin-III, heparin cofactor 2), other heparin-binding proteins and factors promoting fibrinolysis (factor XII, plasma kallikrein), conforming to an anti-inflammatory and anti-fibrotic profile. HiG enriched moderate levels of complement inhibitors, conforming to a low-inflammatory and pro-fibrotic profile. AP showed the most prominent enrichment of complement activators (e.g. C3, properdin, C-reactive protein) and low levels of inhibitors, conforming to a pro-inflammatory and highly pro-fibrotic profile. In conclusion, the extensive enrichment of inhibitory acute-phase proteins on SA could be a determining factor for its reduced host response. The interactions between the plasma proteins and hydrogel surfaces shown herein point to proteomics as an important supplement to existing and methods for designing biocompatible alginate-based hydrogels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676213PMC
http://dx.doi.org/10.1016/j.mtbio.2022.100490DOI Listing

Publication Analysis

Top Keywords

complement coagulation
16
protein adsorption
8
determining factor
8
host response
8
levels complement
8
inhibitors conforming
8
pro-fibrotic profile
8
complement
6
alginate
5
ms-proteomics insight
4

Similar Publications