Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Prenatal exposures to metallic and metalloid trace elements have been linked to altered immune function in animal studies, but few epidemiologic studies have investigated immunological effects in humans. We evaluated the risk of bacterial sepsis (an extreme immune response to bacterial infection) in relation to prenatal metal/metalloid exposures, individually and jointly, within a US-based cohort of infants born extremely preterm.

Methods: We analyzed data from 269 participants in the US-based ELGAN cohort, which enrolled infants delivered at <28 weeks' gestation (2002-2004). Concentrations of 8 trace elements-including 4 non-essential and 4 essential-were measured using inductively coupled plasma tandem mass spectrometry in umbilical cord tissue, reflecting fetal exposures. The infants were followed from birth to postnatal day 28 with bacterial blood culture results reported weekly to detect sepsis. Discrete-time hazard and quantile g-computation models were fit to estimate associations for individual trace elements and their mixtures with sepsis incidence.

Results: Approximately 30% of the extremely preterm infants developed sepsis during the follow-up period (median follow-up: 2 weeks). After adjustment for potential confounders, no trace element was individually associated with sepsis risk. However, there was some evidence of a non-monotonic relationship for cadmium, with hazard ratios (HRs) for the second, third, and fourth (highest) quartiles being 1.13 (95% CI: 0.51-2.54), 1.94 (95% CI: 0.87-4.32), and 1.88 (95% CI: 0.90-3.93), respectively. The HRs for a quartile increase in concentrations of all 8 elements, all 4 non-essential elements, and all 4 essential elements were 0.92 (95% CI: 0.68-1.25), 1.19 (95% CI: 0.92-1.55), and 0.77 (95% CI: 0.57-1.06). Cadmium had the greatest positive contribution whereas arsenic, copper, and selenium had the greatest negative contributions to the mixture associations.

Conclusions: We found some evidence that greater prenatal exposure to cadmium was associated with an increased the risk of bacterial sepsis in extremely preterm infants. However, this risk was counteracted by a combination of arsenic, copper, and selenium. Future studies are needed to confirm these findings and to evaluate the potential for nutritional interventions to prevent sepsis in high-risk infants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674331PMC
http://dx.doi.org/10.3389/fepid.2022.958389DOI Listing

Publication Analysis

Top Keywords

metallic metalloid
8
metalloid trace
8
trace elements
8
risk bacterial
8
bacterial sepsis
8
prenatal exposure
4
exposure multiple
4
multiple metallic
4
elements risk
4
sepsis extremely
4

Similar Publications

The metalloid tellurium (Te) is toxic to bacteria; however, the element is also extremely rare. Thus, most bacteria will never encounter Te in their environment. Nonetheless significant research has been performed on bacterial Te resistance because of the medical applications of the element.

View Article and Find Full Text PDF

This study investigates the vertical profiles, pollution status and ecological risks of heavy metal(loid)s contamination in three sediment cores (N21, N03, and 38002) from the North Yellow Sea (NYS), with a focus on the influence of grain size effects on sedimentary profiles. The results revealed distinct vertical distribution patterns of heavy metal(loid)s content among the three sediment cores. Enrichment Factor (EF) and Geo-accumulation Index (I) assessments identified Sb as significantly enriched, indicating anthropogenic influence, whereas Co, Cr, Cu, Ni, and Zn primarily originated from natural weathering.

View Article and Find Full Text PDF

Uptake characterization of soil arsenic species and its effects on nitrogen cycle in soybean (Glycine max (L.) Merrill) cultivation: A comparison with cadmium.

Ecotoxicol Environ Saf

September 2025

Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research In

This study aimed to elucidate the effects of arsenic species [As(III)/As(V)] and cadmium [Cd(II)] on nitrification and nitrogen fixation in soybean (Glycine max (L.) Merrill) cultivation, and to identify nitrogen cycle disruption mechanisms in realistic soil environments with a focus on soil-metal-plant-microbe interactions. We examined heavy metal(loid)s uptake in plant tissues, changes in nitrogen species in porewater, nitrogenase activity, the contents of essential trace metals (Mo and Fe) in nitrogenase, and nitrogen-related microbial communities.

View Article and Find Full Text PDF

The correlation between Pb species formation and bioaccessibility in alkaline, smelter-impacted soil co-contaminated with other toxic trace elements after treatment with phosphorus-containing amendments was investigated. The soil was collected near a former copper smelter, El Paso, Texas. It contained Pb (3200 ± 142 mg kg), As (254 ± 14 mg kg), and Cd (110 ± 8 mg kg).

View Article and Find Full Text PDF

Combination of Si@UiO-66-NH paper-based thin film microextraction with direct solid-state spectrofluorimetry for extraction and determination of estradiol in urine.

Anal Chim Acta

November 2025

Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran; Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran. Electronic address:

Background: Determination of the estradiol hormone in urine is crucial for evaluating congenital adrenal hyperplasia, certain hormone-producing ovarian tumors, polycystic ovary syndrome, liver disease, pregnancy, and infertility. On the other hand, steroid hormones can have destructive effects on the environment, animals, and the endocrine system of humans. Consequently, accurately measuring this hormone's concentration in trace amounts is essential for environmental safety and human health.

View Article and Find Full Text PDF