A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Oncology Simulation Model: A Comprehensive and Innovative Approach to Estimate and Project Prevalence and Survival in Oncology. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: We demonstrate a new model framework as an innovative approach to more accurately estimate and project prevalence and survival outcomes in oncology.

Methods: We developed an oncology simulation model (OSM) framework that offers a customizable, dynamic simulation model to generate population-level, country-specific estimates of prevalence, incidence of patients progressing from earlier stages (progression-based incidence), and survival in oncology. The framework, a continuous dynamic Markov cohort model, was implemented in Microsoft Excel. The simulation runs continuously through a prespecified calendar time range. Time-varying incidence, treatment patterns, treatment rates, and treatment pathways are specified by year to account for guideline-directed changes in standard of care and real-world trends, as well as newly approved clinical treatments. Patient cohorts transition between defined health states, with transitions informed by progression-free survival and overall survival as reported in published literature.

Results: Model outputs include point prevalence and period prevalence, with options for highly granular prevalence predictions by disease stage, treatment pathway, or time of diagnosis. As a use case, we leveraged the OSM framework to estimate the prevalence of bladder cancer in the United States.

Conclusion: The OSM is a robust model that builds upon existing modeling practices to offer an innovative, transparent approach in estimating prevalence, progression-based incidence, and survival for oncologic conditions. The OSM combines and extends the capabilities of other common health-economic modeling approaches to provide a detailed and comprehensive modeling framework to estimate prevalence in oncology using simulation modeling and to assess the impacts of new treatments on prevalence over time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673939PMC
http://dx.doi.org/10.2147/CLEP.S377093DOI Listing

Publication Analysis

Top Keywords

oncology simulation
12
simulation model
12
prevalence
10
innovative approach
8
estimate project
8
project prevalence
8
prevalence survival
8
survival oncology
8
osm framework
8
progression-based incidence
8

Similar Publications