Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In the present work, we focus on two dynamical timescales in the Arnold Hamiltonian model: the Lyapunov time and the diffusion time when the system is confined to the stochastic layer of its dominant resonance (guiding resonance). Following Chirikov's formulation, the model is revisited, and a discussion about the main assumptions behind the analytical estimates for the diffusion rate is given. On the other hand, and in line with Chirikov's ideas, theoretical estimations of the Lyapunov time are derived. Later on, three series of numerical experiments are presented for various sets of values of the model parameters, where both timescales are computed. Comparisons between the analytical estimates and the numerical determinations are provided whenever the parameters are not too large, and those cases are in fact in agreement. In particular, the case in which both parameters are equal is numerically investigated. Relationships between the diffusion time and the Lyapunov time are established, like an exponential law or a power law in the case of large values of the parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.106.044205 | DOI Listing |