A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The R2R3MYB transcription factors MaMYBF and MaMYB1 regulate flavonoid biosynthesis in grape hyacinth. | LitMetric

The R2R3MYB transcription factors MaMYBF and MaMYB1 regulate flavonoid biosynthesis in grape hyacinth.

Plant Physiol Biochem

College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Key Laboratory of Horticultural Plant Biol

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

R2R3 MYBs play vital roles in the regulation of flavonoid biosynthesis. However, the regulatory network of R2R3 MYBs in flavonoid biosynthesis is not fully understood in grape hyacinth (Muscari spp.). Here, we identified two R2R3 MYBs, MaMYBF and MaMYB1, as potential regulators of flavonol and anthocyanin biosynthesis, respectively. MaMYBF and MaMYB1 expression was elevated during flower development and was light-induced, and the expression patterns were related to those of the flavonoid structural genes MaFLS and MaDFR, respectively. The BiFC assay verified that MaMYB1 interacts with MabHLH1, but MaMYBF does not. A dual luciferase assay revealed that MaMYBF alone strongly activated pMaFLS, and its activation was attenuated at reduced doses of MaMYBF in the presence of MabHLH1, MaMybA, and MaMYB1. MaDFR transcription mediated by MaMybA and MabHLH1 was inhibited by MaMYB1. Moreover, overexpression of MaMYBF and MaMYB1 in tobacco reduced flower pigmentation and repressed the expression of flavonoid pathway key structural genes. Therefore, MaMYBF regulates the flavonol pathway independently of cofactors. Whereas MaMYB1 regulates anthocyanin biosynthesis by binding to MabHLH1 and disrupting the MaMybA-bHLH complex in grape hyacinth. Our results offer new insights into the intricate regulatory network of flavonoids in grape hyacinth involving the regulation of both flavonol and anthocyanin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2022.11.010DOI Listing

Publication Analysis

Top Keywords

mamybf mamyb1
16
grape hyacinth
16
flavonoid biosynthesis
12
r2r3 mybs
12
mamybf
8
mamyb1
8
regulatory network
8
flavonol anthocyanin
8
anthocyanin biosynthesis
8
structural genes
8

Similar Publications