98%
921
2 minutes
20
Cell-cell interactions shape cellular function and ultimately organismal phenotype. Interacting cells can sense their mutual distance using combinations of ligand-receptor pairs, suggesting the existence of a spatial code, i.e., signals encoding spatial properties of cellular organization. However, this code driving and sustaining the spatial organization of cells remains to be elucidated. Here we present a computational framework to infer the spatial code underlying cell-cell interactions from the transcriptomes of the cell types across the whole body of a multicellular organism. As core of this framework, we introduce our tool cell2cell, which uses the coexpression of ligand-receptor pairs to compute the potential for intercellular interactions, and we test it across the Caenorhabditis elegans' body. Leveraging a 3D atlas of C. elegans' cells, we also implement a genetic algorithm to identify the ligand-receptor pairs most informative of the spatial organization of cells across the whole body. Validating the spatial code extracted with this strategy, the resulting intercellular distances are negatively correlated with the inferred cell-cell interactions. Furthermore, for selected cell-cell and ligand-receptor pairs, we experimentally confirm the communicatory behavior inferred with cell2cell and the genetic algorithm. Thus, our framework helps identify a code that predicts the spatial organization of cells across a whole-animal body.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714814 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1010715 | DOI Listing |
Environ Monit Assess
September 2025
Department of Forestry Engineering, Federal University of Lavras (UFLA), Lavras, Minas Gerais State, Brazil.
In general, species on our planet are adapted to phenological patterns of vegetation, which are strongly influenced by various climatic and environmental factors that, when altered, can threaten biodiversity. Recent studies have utilized the spatiotemporal variability of vegetation to understand its dynamics, directly affecting biodiversity. Therefore, this research aimed to generate indices of temporal variability considering vegetation phenology and indices of spatial variability of vegetation to subsequently identify priority areas for biodiversity conservation in the Cerrado and Caatinga regions in Minas Gerais State, Brazil.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
OmnibusXLab, OmnibusX Company Limited, Ho Chi Minh City, Vietnam.
OmnibusX is an integrated, privacy-centric platform that enables code-free multi-omics data analysis by bridging computational methodologies with user-friendly interfaces. Designed to overcome challenges posed by fragmented analytical tools and high computational barriers, OmnibusX consolidates workflows for diverse technologies - including bulk RNA-seq, single-cell RNA-seq, single-cell ATAC-seq, and spatial transcriptomics - into a single, cohesive application. The application integrates established open-source tools such as Scanpy, DESeq2, SciPy, and scikit-learn into transparent, reproducible pipelines, offering users control over analytical parameters.
View Article and Find Full Text PDFEvent-based sensors (EBS), with their low latency and high dynamic range, are a promising means for tracking unresolved point-objects. Conventional EBS centroiding methods assume the generated events follow a Gaussian distribution and require long event streams ($\gt 1$s) for accurate localization. However, these assumptions are inadequate for centroiding unresolved objects, since the EBS circuitry causes non-Gaussian event distributions, and because using long event streams negates the low-latency advantage of EBS.
View Article and Find Full Text PDFIEEE Trans Comput Biol Bioinform
September 2025
Deciphering the three-dimensional structure of proteins remains a grand challenge in biology and medicine, as it holds the key to understanding their biological functions and facilitating drug discovery. In this paper, we introduce DECIPHER (Deep Encoding of Cellular Interactions and Protein HiErarchical Representation), a novel deep graph learning framework for protein structure prediction. By representing proteins as graphs, where residues and atoms serve as nodes and their interactions form edges, we capture the intricate spatial relationships within these complex biomolecules.
View Article and Find Full Text PDFBrief Bioinform
August 2025
School of Information and Artificial Intelligence, Anhui Agricultural University, 130 Changjiang Road, Shushan District, Hefei, Anhui 230036, China.
Protein-nucleic acid binding sites play a crucial role in biological processes such as gene expression, signal transduction, replication, and transcription. In recent years, with the development of artificial intelligence, protein language models, graph neural networks, and transformer architectures have been adopted to develop both structure-based and sequence-based predictive models. Structure-based methods benefit from the spatial relationship between residues and have shown promising performance.
View Article and Find Full Text PDF