98%
921
2 minutes
20
α-Synuclein (α-Syn) is a natively unstructured protein, which self-assembles into higher-order aggregates possessing serious pathophysiological implications. α-Syn aberrantly self-assembles into protein aggregates, which have been widely implicated in Parkinson's disease (PD) pathogenesis and other synucleinopathies. The self-assembly of α-Syn involves the structural conversion of soluble monomeric protein into oligomeric intermediates and eventually fibrillar aggregates of amyloids with cross-β-sheet rich conformation. These aggregated α-Syn species majorly constitute the intraneuronal inclusions, which is a hallmark of PD neuropathology. Self-assembly/aggregation of α-Syn is not a single-state conversion process as unfolded protein can access multiple conformational states through the formation of metastable, transient pre-fibrillar intermediate species. Recent studies have indicated that soluble oligomers are the potential neurotoxic species responsible for cell death in PD pathogenesis. The heterogeneous and transient nature of oligomers formed during the early stage of aggregation pathway limit their detailed study in understanding the structure-toxicity relationship. Moreover, the precise molecular events occurring in the early stage of α-Syn aggregation process majorly remain unsolved. Recently, liquid-liquid phase separation (LLPS) of α-Syn has been designated as an alternate nucleation mechanism, which occurs in the early lag phase of the aggregation pathway leading to the formation of dynamic supramolecular assemblies. The stronger self-association among the protein molecules triggers the irreversible liquid-to-solid transition of these supramolecular assemblies into the amyloid-like hydrogel, which may serve as a reservoir entrapping toxic oligomeric intermediates and fibrils. This review strives to provide insights into different modes of α-Syn self-assemblies including LLPS-mediated self-assembly and its recent advancements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/EBC20220055 | DOI Listing |
Nanoscale Horiz
September 2025
School of Biomedical Engineering, University of Sydney, Darlington 2008, New South Wales, Australia.
Entropy-driven drying-mediated self-assembly of plasmonic nanocrystals (termed "plasmonic atoms") has emerged as a general strategy for fabricating plasmene nanosheets from a wide range of monodisperse nanocrystals. However, extending this approach to binary systems remains challenging due to the complex nanoscale interactions between dissimilar nanocrystal shapes. Here, we introduce a combined enthalpy- and entropy-driven strategy to achieve an orderly mixed two-dimensional (2D) binary nanoassemblies from complementary reacting polymer-ligated nanocrystals.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
Thermocells (TECs) represent a promising technology for sustainable low-grade waste heat (<100 °C) harvesting, offering distinct advantages such as scalability, structural versatility, and high thermopower. However, their practical applications are still hindered by low energy conversion efficiency and stability issues. In recent studies, electrolyte engineering has been highlighted as a critical strategy to enhance their thermopower by regulating the solvation structure and redox ion concentration gradient, thereby improving conversion efficiency.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
Understanding hydrogen bonding and ion-specific interactions in water, sodium sulfate (NaSO), and acetonitrile (ACN) systems remains challenging due to their complex, dynamic nature. Here, Raman spectroscopy is employed to probe hydrogen bonding networks and ion reorganization in NaSO aqueous solutions with different ACN concentrations. The results indicate that, at low ACN concentrations in the ternary solutions, hydrogen bonding between ACN and water molecules disrupts the original hydration structure of the ions, resulting in the formation of small ion clusters via electrostatic interactions.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China; School of Resources and Civil Engineering, GanNan University of Science and Technology, Ganzhou, 341000, China.
Herein, organic/inorganic multiple adsorption sites were constructed on halloysite to intensify the selective adsorption performance of the adsorbent for Al(III) in rare earth solutions. The adsorption heat behavior and thermodynamics of the composite for different ion systems were investigated using microcalorimetry. The results showed that chitosan formed a mesoporous membrane on the acid-treated calcined halloysite (HalH) substrate through a strong electron interaction between the nitrogen atom of the amino group and the oxygen atom of SiO structure on HalH.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; International Resea
Phase separation has been discovered as a new form of regulation in innate immunity. Here, we found that IL6Ra in teleost fish has a unique intrinsic disordered region (IDR) in its amino acid sequence, distinguishing it from the IL6Ra of higher vertebrates. This unique feature endows IL6Ra with the ability to undergo liquid-liquid phase separation, enabling the organism to swiftly initiate an immune response at the early stages of viral infection.
View Article and Find Full Text PDF