A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Disagreements Between Calorimetric and Van't Hoff Enthalpies of Adsorption II: Effect of pH and pH Buffers on Phenobarbital Adsorption to Activated Carbon. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The reported inconsistencies between the van't Hoff equation and calorimetry hinder the utility of thermodynamics in biochemical and pharmaceutical research. A novel thermodynamic approach is developed herein for ligand adsorption with a focus on the interpretation of calorimetric data in the presence of concurrent proton exchange reactions. Such exchange reactions typically result in a pH-dependence of calorimetric measurements that obscures intrinsic binding enthalpies. It is shown that for the adsorption of phenobarbital to activated carbon, the measured calorimetric enthalpy is a result of three linked acid/base equilibria. A model was established to predict the intrinsic binding enthalpy using 1) the adsorbate's pKa and 2) the adsorbate's enthalpy of protonation. The observed calorimetric enthalpy of binding exhibited both pH and buffer-dependence and was between -5 and -42 kJ/mol. Meanwhile, the predicted intrinsic enthalpy (-25.1 kJ/mol) of binding was in excellent agreement with the measured intrinsic enthalpy (-25.6 kJ/mol). Corrections to the observed calorimetric enthalpies allowed comparisons with enthalpies obtained from the van't Hoff method. It is shown that the predicted intrinsic calorimetric enthalpy agrees well with the van't Hoff enthalpies in instances where observed enthalpies significantly deviated. This treatment is general and is not specific to phenobarbital or activated carbon.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2022.11.006DOI Listing

Publication Analysis

Top Keywords

van't hoff
16
activated carbon
12
calorimetric enthalpy
12
hoff enthalpies
8
enthalpies adsorption
8
exchange reactions
8
intrinsic binding
8
phenobarbital activated
8
observed calorimetric
8
predicted intrinsic
8

Similar Publications