Electronic properties of lithium-ion conductive amorphous lithium phosphorus oxynitride.

Chem Commun (Camb)

Department of Materials Design Engineering, Graduate School of engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 4648606, Japan.

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The valence band maxima of Li conductive amorphous lithium phosphorus oxynitride (LiPON) electrolyte depend on the chemical bonding states, and isolated nonbonding oxygen raises them. In contrast, the conduction band minima of the LiPON are independent of the composition and the values are less than the work function of Li.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cc05117fDOI Listing

Publication Analysis

Top Keywords

conductive amorphous
8
amorphous lithium
8
lithium phosphorus
8
phosphorus oxynitride
8
electronic properties
4
properties lithium-ion
4
lithium-ion conductive
4
oxynitride valence
4
valence band
4
band maxima
4

Similar Publications

Pressure-Driven Structural and Optoelectronic Tuning of Cl-Substituted 2D Lead Halide Perovskite (ClPMA)PbI.

J Phys Chem Lett

September 2025

Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

We present a systematic high-pressure investigation of the chlorine-functionalized two-dimensional hybrid perovskite (ClPMA)PbI, integrating high-pressure synchrotron powder X-ray diffraction (HP-PXRD), photoluminescence spectroscopy (HP-PL), and first-principles density functional theory (DFT) calculations. Under hydrostatic compression up to 6.18 (±0.

View Article and Find Full Text PDF

The supramolecular organization of functional molecules at the mesoscopic level influences their material properties. Typically, planar π-conjugated (disc- or linear-shaped) molecules tend to undergo one-dimensional (1D) stacking, whereas two-dimensional (2D) organization from such building blocks is seldom observed in spite of their technological potential. Herein, we rationally achieve both 1D and 2D organizations from a single planar, π-conjugated molecular system competitive interactions.

View Article and Find Full Text PDF

Ultrafast Al⁺ Conduction through Cooperative Bonding in Disordered Polycarbonate-Polyether Electrolytes.

Small Methods

September 2025

Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics, Science and Technology, Hebei University, Baoding, 071002, China.

As a new generation of high-energy-density energy storage system, solid-state aluminum-ion batteries have attracted much attention. Nowadays polyethylene oxide (PEO)-based electrolytes have been initially applied to Lithium-ion batteries due to their flexible processing and good interfacial compatibility, their application in aluminum-ion batteries still faces problems. To overcome the limitations in aluminum-ion batteries-specifically, strong Al coordination suppressing ion dissociation, high room-temperature crystallinity, and inadequate mechanical strength-this study develops a blended polymer electrolyte (BPE) of polypropylene carbonate (PPC) and PEO.

View Article and Find Full Text PDF

We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.

View Article and Find Full Text PDF

Defect engineering in cobalt-doped prussian blue to enhance sonocatalytic activities for anticancer treatment.

J Mater Chem B

September 2025

Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.

The effect of sonocatalysis on anticancer treatment is always restricted by rapid recombination of charge and low utilization of the ultrasonic cavitation effect. Herein, cobalt-doped prussian blue (PB) nanocubes were synthesized, and then they were etched by acidic solution to obtain amorphous Co-FePB@1h with abundant defects including: Fe/Co defects, Fe-(CN) vacancies, and dangling bonds. Both doping and defect engineering contribute to decreasing the band gap and promoting charge separation.

View Article and Find Full Text PDF