98%
921
2 minutes
20
Nanocalorimetry, or thermal nano-analysis, is a powerful tool for fast thermal processing and thermodynamic analysis of materials at the nanoscale. Despite multiple reports of successful applications in the material sciences to study phase transitions in metals and polymers, thermodynamic analysis of biological systems in their natural microenvironment has not been achieved yet. Simply scaling down traditional calorimetric techniques, although beneficial for material sciences, is not always appropriate for biological objects, which cannot be removed out of their native biological environment or be miniaturized to suit instrument limitations. Thermal analysis at micro- or nano-scale immersed in bulk liquid media has not yet been possible. Here, we report an AC/DC modulated thermal nano-analyzer capable of detecting nanogram quantities of material in bulk liquids. The detection principle used in our custom-build instrument utilizes localized heat waves, which under certain conditions confine the measurement area to the surface layer of the sample in the close vicinity of the sensing element. To illustrate the sensitivity and quantitative capabilities of the instrument we used model materials with detectable phase transitions. Here, we report ca. 10 improvement in the thermal analysis sensitivity over a traditional DSC instrument. Interestingly, fundamental thermal properties of the material can be determined independently from heat flow in DC (direct current) mode, by using the AC (alternating current) component of the modulated heat in AC/DC mode. The thermal high-frequency AC modulation mode might be especially useful for investigating thermal transitions on the surface of material, because of the ability to control the depth of penetration of AC-modulated heat and hence the depth of thermal sensing. The high-frequency AC mode might potentially expand the range of applications to the surface analysis of bulk materials or liquid-solid interfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655476 | PMC |
http://dx.doi.org/10.3390/nano12213799 | DOI Listing |
Phys Rev Lett
August 2025
The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Simulating large-scale lattice dynamics remains a long-standing challenge in condensed matter and materials science, where mechanical and thermal behaviors arise from coupled vibrational modes. We introduce a quantum algorithm that reformulates general harmonic lattice dynamics as a time-dependent Schrödinger equation governed by a sparse, Hermitian Hamiltonian. This enables the use of Hamiltonian simulation techniques on quantum devices, offering exponential speedup in the number of atoms N.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Universidade Federal de Pernambuco, Núcleo de Tecnologia, Centro Acadêmico do Agreste, Avenida Marielle Franco, Caruaru-PE, 55014-900, Brazil.
Self-propulsion plays a crucial role in biological processes and nanorobotics, enabling small systems to move autonomously in noisy environments. Here, we theoretically demonstrate that a bound skyrmion-skyrmion pair in a synthetic antiferromagnetic bilayer can function as a self-propelled topological object, reaching speeds of up to a hundred million body lengths per second-far exceeding those of any known synthetic or biological self-propelled particles. The propulsion mechanism is triggered by the excitation of back-and-forth relative motion of the skyrmions, which generates nonreciprocal gyrotropic forces, driving the skyrmion pair in a direction perpendicular to their bond.
View Article and Find Full Text PDFSci Adv
September 2025
Electrical and Computer Engineering Department, University of Washington, Seattle, WA 98105, USA.
Optomechanical and electro-optomechanical systems have emerged as one of the most promising approaches for quantum microwave-to-optical transduction to interconnect distributed quantum modalities for scaling the quantum systems. These systems use suspended structures to increase mode overlap and mitigate loss to achieve high efficiency. However, the suspended design's poor heat dissipation under strong drive limits the ultimate efficiency.
View Article and Find Full Text PDFSci Adv
September 2025
School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.
Developing intelligent robots with integrated sensing capabilities is critical for advanced manufacturing, medical robots, and embodied intelligence. Existing robotic sensing technologies are limited to recording of acceleration, driving torque, pressure feedback, and so on. Expanding and integrating with the multimodal sensors to mimic and even surpass the human feeling is substantially underdeveloped.
View Article and Find Full Text PDF