98%
921
2 minutes
20
Objectives: Augmented reality (AR), which entails overlay of in situ images onto the anatomy, may be a promising technique for assisting image-guided interventions. The purpose of this study was to investigate and compare the learning experience and performance of untrained operators in puncture of soft tissue lesions, when using AR ultrasound (AR US) compared with standard US (sUS).
Methods: Forty-four medical students (28 women, 16 men) who had completed a basic US course, but had no experience with AR US, were asked to perform US-guided biopsies with both sUS and AR US, with a randomized selection of the initial modality. The experimental setup aimed to simulate biopsies of superficial soft tissue lesions, such as for example breast masses in clinical practice, by use of a turkey breast containing olives. Time to puncture(s) and success (yes/no) of the biopsies was documented. All participants completed questionnaires about their coordinative skills and their experience during the training.
Results: Despite having no experience with the AR technique, time to puncture did not differ significantly between AR US and sUS (median [range]: 17.0 s [6-60] and 14.5 s [5-41], p = 0.16), nor were there any gender-related differences (p = 0.22 and p = 0.50). AR US was considered by 79.5% of the operators to be the more enjoyable means of learning and performing US-guided biopsies. Further, a more favorable learning curve was achieved using AR US.
Conclusions: Students considered AR US to be the preferable and more enjoyable modality for learning how to obtain soft tissue biopsies; however, they did not perform the biopsies faster than when using sUS.
Key Points: • Performance of standard and augmented reality US-guided biopsies was comparable • A more favorable learning curve was achieved using augmented reality US. • Augmented reality US was the preferred technique and was considered more enjoyable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017581 | PMC |
http://dx.doi.org/10.1007/s00330-022-09220-5 | DOI Listing |
J Surg Res
September 2025
Department of General Surgery, Medical City Plano, Texas.
Introduction: Augmented reality (AR) telestration has the potential to completely transform surgical teaching and training. In contrast to traditional telestration and telestration without AR, this systematic review and meta-analysis attempted to thoroughly assess the effect of telestration with AR on a variety of performance metrics, including task completion time, error rates, GOALS task-specific scores, Objective Structured Assessments of Technical Skills (OSATS) task-specific scores, and Global Operative Assessment of Laparoscopic Skills (GOALS) global scores.
Methods: Six relevant publications were included after a thorough literature search was carried out on March 2024 across relevant databases.
Nurse Educ Pract
September 2025
Department of Allied Health Education and Digital Learning, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan, ROC. Electronic address:
Aim: To evaluate the effectiveness of the CARES-MFW (Clinical Augmented Reality Education Simulation for Malignant Fungating Wounds) app in enhancing nurses' knowledge and clinical reasoning in the care of MFWs.
Background: Malignant fungating wounds (MFWs) affect many patients with advanced cancer, with nearly 50 % dying within six months of diagnosis. These wounds often present with heavy exudate, pain, malodor and bleeding, leading to profound physical and psychosocial distress.
ObjectiveThis work examined performance costs for a spatial integration task when two sources of information were presented at increasing eccentricities with an augmented-reality (AR) head-mounted display (HMD).BackgroundSeveral studies have noted that different types of tasks have varying costs associated with the spatial proximity of information that requires mental integration. Additionally, prior work has found a relatively negligible role of head movements associated with performance costs.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
School of Applied Sciences and Technology, Gujarat Technological University, Gujarat, India. Electronic address:
This chapter examines advancements and future trajectories in wearable biosensing technologies, a multidisciplinary field encompassing healthcare, materials science, and information technology. Wearable biosensors are revolutionizing real-time physiological and biochemical monitoring with applications in personalized health monitoring, disease diagnosis, fitness, and therapeutic interventions. In addition to Internet of Things (IoT) and wireless connectivity technologies such as Bluetooth Low Energy (BLE) and 5G, which facilitate transparent remote monitoring and data exchange, other notable innovations such as machine learning and artificial intelligence enhance real-time processing of data, predictive analytics, and personalized healthcare solutions.
View Article and Find Full Text PDFKorean J Med Educ
September 2025
Clinical Skills Department and IMU Centre of Education, IMU University, Bukit Jalil, Malaysia.