A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A coupled atrioventricular-aortic setup for in-vitro hemodynamic study of the systemic circulation: Design, fabrication, and physiological relevancy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In-vitro models of the systemic circulation have gained a lot of interest for fundamental understanding of cardiovascular dynamics and for applied hemodynamic research. In this study, we introduce a physiologically accurate in-vitro hydraulic setup that models the hemodynamics of the coupled atrioventricular-aortic system. This unique experimental simulator has three major components: 1) an arterial system consisting of a human-scale artificial aorta along with the main branches, 2) an artificial left ventricle (LV) sac connected to a programmable piston-in-cylinder pump for simulating cardiac contraction and relaxation, and 3) an artificial left atrium (LA). The setup is designed in such a way that the basal LV is directly connected to the aortic root via an aortic valve, and to the LA via an artificial mitral valve. As a result, two-way hemodynamic couplings can be achieved for studying the effects that the LV, aorta, and LA have on each other. The collected pressure and flow measurements from this setup demonstrate a remarkable correspondence to clinical hemodynamics. We also investigate the physiological relevancies of isolated effects on cardiovascular hemodynamics of various major global parameters found in the circulatory system, including LV contractility, LV preload, heart rate, aortic compliance, and peripheral resistance. Subsequent control over such parameters ultimately captures physiological hemodynamic effects of LV systolic dysfunction, preload (cardiac) diseases, and afterload (arterial) diseases. The detailed design and fabrication of the proposed setup is also provided.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635706PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267765PLOS

Publication Analysis

Top Keywords

coupled atrioventricular-aortic
8
hemodynamic study
8
systemic circulation
8
design fabrication
8
artificial left
8
setup
5
atrioventricular-aortic setup
4
setup in-vitro
4
hemodynamic
4
in-vitro hemodynamic
4

Similar Publications