Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We present here a scalable and environmentally friendly gas phase technique employing atmospheric pressure electrical spark discharge plasmas for the production of Au/Co binaries, an effective catalyst system for the decomposition of hydrogen-rich compounds, such as ammonium borane. We demonstrate that Au/Co alloy nanoparticles can be produced via the spark plasma-based technique. The possibility of varying the morphology and phase structure via real time heat treatment of the generated aerosol to form Au/Co/CoO particles with continuous control over a wide particle compositional range (from 24 to 64 at.% [Co]/([Co] + [Au]) content) is also demonstrated. Since our spark-based approach is proven to be capable of providing reasonable particle yields, these results may contribute to the transition of lab-scale, nanocatalyst-based hydrogen storage systems to real world applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633648 | PMC |
http://dx.doi.org/10.1038/s41598-022-22928-0 | DOI Listing |